

Cisco Systems

Cisco Unity Connection Java
REST SDK
For END USER APIs

Utkarsh Katiyar

2

Contents
Overview .. 4

Integration ... 4

The library .. 5

ConnectionServer .. 7

WebCallResult ... 8

PagingData .. 9

PhoneRecording .. 9

Create a recording .. 9

Play recording ... 9

User ... 10

Voice name ... 10

PIN and Password ... 11

Greeting .. 11

Fetch user greetings .. 11

Disable greeting .. 12

Enable greeting ... 12

Customized greeting recording ... 12

Update greeting .. 13

Messaging ... 13

Fetch message list ... 14

Fetch message count .. 15

Send message ... 15

Fetch message details ... 17

Update message properties .. 17

Delete message ... 17

CometNotification ... 18

Subscribe ... 18

Receive events .. 18

Un-subscribe ... 19

3

TransferOption .. 20

Fetch transfer option .. 20

Disable transfer option ... 20

Enable transfer option .. 20

Update transfer option ... 21

Directory ... 21

AlternateName .. 22

Fetch the list of alternate names .. 22

Create an alternate name ... 22

Modify alternate name ... 23

Delete alternate name .. 24

AlternateDevice .. 24

HtmlDevice .. 26

UserExternalServiceAccount ... 26

PrivateList .. 27

PrivateListMember .. 28

Fetch all members of a private list .. 29

Create a private list member .. 29

Delete private list member ... 30

SmtpProxyAddress .. 30

References ... 30

4

Overview
This library is to be used for the development of the Unity Connection REST API based
applications. It liberates the application developer from the basic operations like making
request, hitting the API URL, parsing the response etc. It has all that functionality
wrapped-up inside easy-to-use java objects which enables the developer to perform
some of critical API operations with minimum complexity.

It includes all the operations supported by the Connection REST interface related to the
END USER (subscriber), like editing basic fields, alternate names, private lists, private
list members, html devices etc. For Admin level APIs, there is a separate library.

Integration
The library covers the functionality provided in different Unity Connection releases
starting from 8.6. Although the library takes care of the backward compatibility but
some of the functionalities might throw error if used with a non-supported release. The
library has been tested with all the releases past 8.6 and some of the functionalities
don’t work or behave differently in different releases. Example: Message count
functionality has been introduced post 9.1 so it will not work in the earlier releases.

The library is a jar file which can be included in the java application and the
functionalities can be used. The library comes with complete java-docs which help
developers and provide enough information while using code-assist features of different
IDEs.

This is an open source library so you can fiddle up with the base functionalities as per
the requirement, if you want to.

A sample eclipse project is included in the subversion which makes use of the library
and has some example classes demonstrating some basic operations. It also includes all
the used libraries (http-client, logging, etc.). For downloading the project, you might
want to install SVN client (subeclipse plug-in in case of eclipse). The read-only
credentials are provided on the web-page.

NOTE: This library uses 3.x version of apache-http-client.

5

The library
The library intends to wrap the END User API functions. It is divided into different
classes related to different END User related objects. Almost all the functions are
available in both static and member functions to the object so it can be called upon
both ways. Means, you have a method getGreetings() which can be called on a user
object and also there is a static method Greeting.getGreetings() which also serves the
same purpose.

Some useful features:

1. Every object has a method named clearPendingChanges() which can be used to
clear up a dirty object.

Example: If a user update was desirable and the update operation didn’t
succeed, then to maintain the local state of the object this function can be called.

 //change the user attribute in the local object.
 user.setAltLastName("TestLast");
 //send it for update
 WebCallResult res = user.update();
 if(res.isSuccess()){
 ///Update is successful
 }
 else{
 //update failed so maintain the original state.
 user.clearPendingChanges();

 }

2. Each object has its toString() method overridden to provide a string which holds

some key attributes of that.

3. There is a method named dumpAllProperties, available with all the objects
which print the properties of an object.

 user.dumpAllProperties("->");

4. The library supports both local and phone recordings which can be assigned to
the voice names and greetings of different objects.

5. There is complete messaging support (CUMI) for the user in the library. Various

messaging operations like, message counts in different folders (inbox, deleted,
sent), sending message, changing message properties etc. are supported.

6. There are 2 types of objects for most user elements. One of those is for an

individual element and the other is for a group of those elements.

6

Example: There are 2 types of alternate device objects. One is
“AlternateDevices” and the other is “AlternateDevice”. AlternateDevice is the
object which holds the properties of an individual alternate device whereas
AlternateDevices is the object which holds a group of alternate devices.

Alternate devices for the user can be fetched like this:

//Fetch all alternate devices for the user using member function in
user construct

 AlternateDevices devices = user.getAlternateDevices();
log.info(devices);

There is a static construct also available for the same operation

 //Fetch all alternate devices for the user using static functions
 AlternateDevices devices = AlternateDevice.getAlternateDevices(server);
 log.info(devices);

AlternateDevices object contains a list which has details for the various alternate
devices for the user. It can be traversed to get the alternate devices.

//Traverse through the fetched devices
 List<AlternateDevice> deviceList = devices.getAlternateDevice();
 for(AlternateDevice device : deviceList){
 log.info(device);
 }

Both types of objects exist for most of the user related objects and each of it
follows a similar design pattern for CRUD operations.

Now let’s go through the different key objects in the library. This document tries to
capture as much information and description of the functionalities for those. All the
functions and other key information are present in the java-docs.

7

ConnectionServer
This object contains the attributes related to the unity connection server on which the
REST requests need to be sent. All the operations (static) require the server object to
be passed as the parameter. A ConnectionServer object can be created like this:

//Create connection server object.
 ConnectionServer server = null;
 try{
 server = new ConnectionServer("test.cisco.com", "user",
"UserPassword");
 }
 catch(Exception ex){
 //error handling code
 }

Creating a connection server instance internally sends a request to fetch the connection
version which ensures that the details provided for the server are valid.

There are various functions available with this object which can be helpful. One of such
function is isConnectSuccessful which returns a boolean value indicating whether the
connection to the server was successful or not.

Mostly one wants to check which connection version, the library is being attached to.
The connection server object provides a function for this.

//Validate connection version
 if (!server.isVersionAtLeast(9,1,0))
 {
 log.info("Version of 9.1.0 or later is required, current
version is " + server.getVersion());
 return;
 }
 else{
 log.info("Version is fine::" + server.getVersion());
 }

The method is overloaded in a way that it can perform checks on various release
attributes like major version, minor version, revision, build number.

// Example:
server.isVersionAtLeast(10) - validate major version
server.isVersionAtLeast(10,0) - validate major and minor version
server.isVersionAtLeast(10,0,0) - validate major, minor version and the
revision
server.isVersionAtLeast(10,0,0,23) - validate major, minor version, revision
and build number

8

WebCallResult
This is the class which holds various elements involved in the request to the server and
the response, like: response code, response text, error code, error message etc. All the
objects have this class as a member which gets set when any operation is performed on
that object.

//Fetch user information
 User user = User.getUser(server);

 if(user.getWebCallResult().isSuccess()){
 user.dumpAllProperties("-->");
 }
 else{
 log.info("Failed in fetching user information::" +
user.getWebCallResult());
 return;
 }

Most of the functions in the library (almost all updates and deletes) return this object
which holds the result of the operation and some other information.

 user.setAltFirstName("TestFirstName");
 WebCallResult res = user.update();
 if(res.isSuccess()){
 log.info("User updated successfully");
 }
 else{
 log.info(res);
 }

WebCallResult can provide enough information for debugging perspective and mostly it
will be used as a holding object for the HTTP request/response attributes. As described
earlier, the toString() method of this class is overridden, so on printing the object it will
show you the result(success/failure), error code and error message. The object also has
dumpAllProperties method, which can be very helpful in debugging if something goes
wrong.

A sample output of dumpAllProperties on a failed operation would be something like
this:

-->Success=false

-->ResponseCode=400

-->ErrorCode=DATA_EXCEPTION

-->ErrorMessage=Duplicate extension in partition: ObjectName =
[EmbeddedKey=CustomType.ObjectType.21], DtmfAccessId = 1048, OwnerObjectId =
856be091-30a9-45dd-9bcc-7f8e4444000f

9

PagingData
 WebCallResult construct also contain an attribute which is called paging data. With
subscriber APIs, it’s only applicable in case of message listing. This construct provides
all the paging elements, which will be helpful in designing applications with different
paging information. The user need to provide records per page and page number
attributes to the API call and it will calculate all the other attributes based on the result.
It contains elements such as, records per page, current page number, total pages, total
records, next page number, previous page number, start index on this page, end index
on this page etc. The example of this is provided in Messaging section.

PhoneRecording
A user can create recordings on a phone and assign that recording to its voice name or
greetings. Using REST APIs, this can be a multi-step process which is simplified using
this construct.

The constructor takes a server object and the extension on which the call needs to be
placed.

//Create a phone recording object
 PhoneRecording pc = new PhoneRecording(server, "1040");

Create a recording
PhoneRecording object can be used now for recording a stream file. It will place the call
on the provided extension and then recording can be done.

 WebCallResult res = pc.recordStreamFile();
 if(res.isSuccess()){
 System.out.println(pc);
 }
 else{
 System.out.println(res);
 return ;
 }

After the completion of this step, the elements of the PhoneRecording object are
updated with the actual values like callId, resourceId (which is the name of actual wav
file on the server) etc.

Now this object can be passed in the functions for updating voice name or greetings of
the user, which we’ll see in the later sections.

Play recording
To play this recording, there is a function available in this construct.

10

CallControl ctl = pc.playStreamFile();
 WebCallResult res = ctl.getWebCallResult();
 if(res.isSuccess()){
 System.out.println(pc);
 }
 else{
 System.out.println(res);
 return ;
 }

A CallControl object is returned which contains various attributes like speed, volume,
start position etc.

User
As the library is for the END USER APIs, this is the base class for the library. All the
other operations are dependent on a user object. Although those operations can be
performed individually using the static operations on their base classes but mostly you
might find the need to initiate those from a user object (The concept of static and
member functions).

A user object can be created using the getUser() method and passing the connection
server object to it.

 //Fetch user information
 User user = User.getUser(server);

 if(user.getWebCallResult().isSuccess()){
 user.dumpAllProperties("-->");
 }
 else{
 log.info("Failed::" + user.getWebCallResult());
 }

This will fetch you a user object which holds all the basic attributes for it. All the
attributes and related objects for the user can be worked directly from this user object.

Example: If the user’s alternate devices need to be fetched, can be done in this fashion:

//Fetch all alternate devices for the user using member function
in user construct

 AlternateDevices devices = user.getAlternateDevices();
 log.info(devices);

Voice name
If there is a voice name present for a user, it can be fetched and stored in a local wav
file.

WebCallResult res = user.getVoiceName("C:/test/server_file.wav");

11

Voice name for the user can be updated using both local and phone recordings.

Using local recording:

WebCallResult res = user.updateVoiceName("C:/test/local_file.wav");

Using phone recording: a phone recording object can be obtained as described in
section PhoneRecording.

WebCallResult res = user.updateVoiceName(pc);

PIN and Password
Every user can have a PIN (Personal Identification Number) and password (used to
login to web interfaces like web-inbox). To reset the PIN and password there are
methods provided in the User construct.

Reset PIN:

WebCallResult res = user.resetPin(“123456”);

Reset Password:

WebCallResult res = user.resetPassword(“oldpassword”, “newpassword”);

NOTE: The PIN and Password are validated as per the authentication rules
defined by the administrators.

Greeting
Every user is associated with a primary call handler and every call handler has 7
greetings with it: Alternate, Holiday, Internal, Busy, Off Hours, Standard and Error.

By default, Standard greeting is enabled. Any of those greetings cannot be deleted and
no new greeting can be created.

Fetch user greetings
Individual greeting can be fetched by using member function of user object or the static
function in the Greeting construct. The greeting name to be passed is case insensitive.
To avoid error scenarios use GreetingType enum for passing greeting type into different
functions.

Greeting g = user.getGreeting(GreetingType.ALTERNATE.value());
 if(g.getWebCallResult().isSuccess()){

 g.dumpAllProperties("-->");
 }
 else{
 g.getWebCallResult().dumpAllProperties("-->");

12

 }

Disable greeting
Standard and Error greetings are always enabled and cannot be disabled. Other
greetings can be disabled by using member or static function of Greeting construct.

//Disable greeting
WebCallResult res = g.disable();

Enable greeting
The greetings can be enabled using member or static function of Greeting construct.

A greeting can be enabled either till a particular date or forever. The method of the
Greeting construct is overloaded to support both.

//To enable a greeting forever
WebCallResult res = g.enable();

//To enable a greeting till a particular date
//The date which is passed in the function should be
//a UTC date. So whatever date is there as per your system
//convert it to UTC and then pass it to the function
Date d = new Date(); ///The date as per your system timezone

 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 df.setTimeZone(TimeZone.getTimeZone("GMT"));

String s = df.format(d);
WebCallResult res = g.enable(df.parse(s));

Customized greeting recording
All the greetings can have recordings which are played to the caller when that particular
greeting is at work. The recording can be done in multiple languages which provide the
functionality to play the recording to the user, in the language for which the call is set
to. The library supports both local and phone recordings to be assigned as a greeting
recording.

“A greeting can be recorded in multiple languages even when the language is not
installed on the connection server but that greeting recording will never play, unless the
language is installed.”

 To update the greeting recording the member function on the user or greeting
construct can be used. Also there is a static method in the greeting construct for the
same.

//Update greeting recording using a local file

13

WebCallResult res =
greeting.updateRecording(LanguageCodes.EnglishUnitedStates.value(),
“C:/greeting_recording_server.wav”);

//Update greeting recording using a phone recording
WebCallResult res =
greeting.updateRecording(LanguageCodes.EnglishUnitedStates.value(),
pc);
//Here pc is a PhoneRecording object which can be obtained as described
in section PhoneRecording

The language code can be passed as an int, but it’s always better to use
LanguageCodes Enum to avoid errors.

The recording for a particular greeting on the server can be fetched on the local
machine.

//Fetch greeting recording
WebCallResult res =
greeting.getRecording(LanguageCodes.EnglishUnitedStates.value(),
“C:/greeting_recording_local.wav”);

After updating the recording the PlayWhat property of the greeting need to be changed
to RecordedGreeting, to make the custom recording in effect.

Update greeting
A subscriber can update the PlayWhat property of the greeting in addition to the
enable/disable status. This property can be updated using the member or static
function of Greeting construct. The function accepts the value of PlayWhat property as
an int.

greeting.setPlayWhat(PlayWhatType.RecordedGreeting.value());
 WebCallResult res = greeting.update();

Although the function accepts an int, but it’s always better to use PlayWhatType Enum
to avoid errors.

Messaging
The library provides a thorough messaging support for the subscriber using Message
construct. Various messaging related operations can be performed using this construct.

14

Fetch message list
Fetching message list functionality has several variants in the library. There are member
and static functions available in User and static functions in Message constructs. We will
see the member functions in the user construct here.

//Fetch messages for the user
 Messages msgList = user.getMessages();

This call will fetch the messages from “inbox” folder with criteria as 20 messages per
page and page number 1. There are different calls available for this functionality where
different folder types, rows per page and page number parameters can be passed. The
most useful variant of this function is the one with all of those and message search
options which include search and sort criteria.

The call will be something like this:

//Fetch unread-urgent voice messages for the user in descending order
//of arrival time, means starting with the newest.

 MessageOptions opt = new MessageOptions();
 opt.setPriority(PriorityType.URGENT);
 opt.setRead(false);
 opt.setType(MessageType.VOICE);
 opt.setSortType(MessageSortType.SORT_NEW_FIRST);
 int maxMessagesPerPage = 5;
 int pageNumber = 1;
 Messages msgList = user.getMessages(FolderType.INBOX.value(),
maxMessagesPerPage, pageNumber, opt);

This call will produce a list which has unread-urgent voice messages with newest first
and so on and also will apply the paging criteria to it. The webcallresult object
contained by the msgList object here will have the pagingData object having all the
paging information which can be helpful in displaying paging information on an
application.
An example is here which makes use of the paging data and traverses through all the
pages and fetches message lists on those.

 boolean isNext = false;
 int pageNumber = 1;
 int messagesPerPage = 2;
 do{
 Messages list = user.getMessages(FolderType.INBOX.value(),
messagesPerPage, pageNumber);
 WebCallResult res = list.getWebCallResult();
 PagingData data = res.getPagingdata();
 if(data.getNextPage() != -1){
 isNext = true;
 pageNumber = data.getNextPage();
 }

15

 else{
 isNext = false;
 }

 System.out.println("Displaying messages::(" +
data.getStartIndex() + " - " + data.getEndIndex() + ") of " +
data.getTotalRecords());
 for(Message msg : list.getMessage()){
 System.out.println(msg);
 }
 System.out.println();
 }while(isNext);

A sample output of this example would be like this:

Displaying messages::(1 - 2) of 6
[Subject=Test Mail] [From=test] [Duration=15.34s] [Type=VOICE]
[Subject=Test Mail_1] [From=test] [Duration=15.34s] [Type=VOICE]

Displaying messages::(3 - 4) of 6
[Subject=Test Mail_2] [From=test] [Duration=15.34s] [Type=VOICE]
[Subject=Test Mail_3] [From=test] [Duration=15.34s] [Type=VOICE]

Displaying messages::(5 - 6) of 6
[Subject=Test Mail_4] [From=test] [Duration=15.34s] [Type=VOICE]
[Subject=Test Mail_5] [From=test] [Duration=15.34s] [Type=VOICE]

Fetch message count
Although message listing provides enough information about the counts and all but if
someone is interested only in getting count, then there is no point in putting the
complete list on the wire. There are separate functions available for fetching the
message counts from different folders.

//Fetch message count for inbox folder
BigInteger count = user.getMessageCount(FolderType.INBOX.value());
System.out.println("Message count=" + count);

Send message
Sending a message involves a couple of things to be done before actually sending a
message. We will have a look at those one by one.

Setting message properties: First step is to set message properties like, priority, sensitivity etc. Those
properties are set in a Map which can be passed in the send message function.

//To set other attributes of the message use the property map
 Map<String, String> props = new HashMap<String, String>();
 props.put("Priority", PriorityType.URGENT.toString());

16

Creating recipient list: This step results in an “Addresses” object containing different recipients in the
form of “Address” objects. This object can be created by creating the objects manually or obtained by
making a Directory search as explained in Directory section. Let’s see how can it be created manually.

//First recipient
Address add1 = new Address();

 add.setType(AddressType.SUBSCRIBER);
 add.setSmtpAddress(“rec1@foo.com”);

//Second recipient
Address add2 = new Address();

 add.setType(AddressType.SUBSCRIBER);
 add.setSmtpAddress(“rec2@foo.com”);

 //Prepare the list of recipients
Addresses list = new Addresses();
list.getAddress().add(add1);
list.getAddress().add(add2);

This list object can now be set as TO, CC, or BCC for the message.

Creating recordings: This step is optional as its not mandatory to always send a recording with the
message but sending a voice mail without any voice wouldn’t make any sense. The recordings can be
local wav files or phone recordings. You can send as many recordings with one message.

After those steps the message is now ready to be sent. The message call is using the
static function in message construct.

//Send message using recorded wav files as attachments
 String recordings[] = {“C:/recording1.wav”};
 WebCallResult res = Message.sendMessage(server, “Test Message”,
“sender@foo.com”, list, null, null, props, recordings);

The method is overloaded to accept phone recordings as input also.

//Send message using phone recordings as attachments
 PhoneRecording recordings[] = {pc};
 WebCallResult res = Message.sendMessage(server, “Test Message”,
“sender@foo.com”, list, null, null, props, recordings);

In case you don’t want to send any recording with the message, pass the recording
parameter as null.

//Send message without any voice attachments
 WebCallResult res = Message.sendMessage(server, “Test Message”,
“sender@foo.com”, list, null, null, props, null);

17

Fetch message details
The message object obtained from the message list contains all the high level attributes
of the message but there are some low level details like Recipient Information,
Attachments etc are not there in it. To get this information, a function call is available
which takes message id as input and fetches the Message object having all the details.

//Fetch message details
 Message fullmsg = Message.getMessage(server, msg.getMsgId());

Update message properties
A message can be updated by marking it read/unread or changing its subject. Those
functionalities can be achieved by using either the member or static function in the
message construct.

//Mark message as Read, Here msg is a Message object
//fetched from a list or using details function
msg.setRead(true);

 WebCallResult res = msg.update();

Delete message
A message delete/undelete/permanent delete is provided using member or static
functions on the message construct. A delete operation on a message is dependent
upon the COS setting for deleted messages. Its decided by the server itself based on
this setting whether the message is hard deleted or sent to deleted folder, unless a
permanent delete is used.

//Delete a message, Here msg is a Message object
 //fetched from a list or using details
 WebCallResult res = msg.delete();

 A deleted message if it goes to deleted folder, can be undeleted (sent back to the
inbox folder).

//UnDelete a message, Here msg is a Message object
 //fetched from a list or using details
 WebCallResult res = msg.undelete();

A message can be permanently deleted without sending it to a deleted folder,
irrespective of the COS setting.

//Hard delete a message, Here msg is a Message object
 //fetched from a list or using details
 WebCallResult res = msg.deletePermanently();

18

CometNotification
The user can receive Comet notifications for message operations on the Inbox and
Deleted Items folders by subscribing to those events. The functionality provided in this
library subscribes the user for all the events (listed below), which will be received as
and when they arrive.

Subscribe
To subscribe for notifications member function of the user construct or the Static
function of the CometNotification construct can be used.

 //Subscribe for event notifications
 CometNotification notification = user.subscribe();
 if(notification.getWebCallResult().isSuccess()){
 System.out.println("Subscription ID:" +
notification.getSubscriptionId());

}

The subscription process will also take care of the various steps required to establish
connection to Jetty server like handshake, connect.

Receive events
After the subscription, one would need to send re-connects towards the server which
will gather events if there are any.

//Repetitively send connect requests towards the server
 //for gathering events
 while(true){
 api.MessageEvent event = CometNotification.receiveEvents(server,
notification);
 if(event.getWebCallResult().isSuccess()){
 if(event.getUsn() != null){
 System.out.println("An event is received");
 event.dumpAllProperties("-->");
 }
 else{
 System.out.println("NO event");
 }
 }
 else{
 System.out.println("Failed to receive events");
 System.out.println(event.getWebCallResult());
 }
 }

An event is wrapped inside a MessageEvent construct which can have one or more
MessageInfo objects.

19

MessageEvent defines some of the basic properties of the notification event such as:

Display Name Description
SubscriptionId Subscription ID

USN Message USN
EventTime Time of Event
EventType Type of Event
MailboxId Mailbox ID of the user

EventType can have following values:

EventType Description
NEW_MESSAGE This event is sent when a new message arrives.

SAVED_MESSAGE This message is sent when a message is marked
read.

UNREAD_MESSAGE This event is sent when a message is marked as
unread.

DELETED_MESSAGE This event is sent when a message is deleted.

MessageInfo has attributes related to the message for which the notification event was
generated. It can have following values of the message:

• MessageId
• CallerAni
• MsgType
• Priority
• ReceiveTime
• Sender

Un-subscribe
To un-subscribe from the notification event requests, the member function of the user
construct or static function of the ComentNotification construct can be used.

//Unsubscribe
 WebCallResult res = user.unsubscribe(notification.getSubscriptionId());
 System.out.println(res);

20

TransferOption
The primary call handler associated with the user gives the feature of transfer options
which can either place a call on the phone (ring the phone) or send the call to active
greeting rule. There are 3 transfer options available: Standard, Alternate and Off Hours.
Those can’t be deleted or new ones can’t be created.

Fetch transfer option
Individual transfer option can be fetched by using member function of user object or
the static function in the TransferOption construct. The transfer option type to be
passed is case insensitive. To avoid error scenarios use TransferOptionType Enum for
passing into different functions.

TransferOption opt = user.get TransferOption
(TransferOptionType.ALTERNATE.value());
 if(opt.getWebCallResult().isSuccess()){

 opt.dumpAllProperties("-->");
 }
 else{
 opt.getWebCallResult().dumpAllProperties("-->");
 }

Disable transfer option
Standard transfer option is always enabled and cannot be disabled. Other transfer
options can be disabled by using member or static function of TransferOption construct
or the member function of user object.

//Disable transfer option
WebCallResult res = opt.disable();

Enable transfer option
Transfer options can be enabled using member or static function of TransferOption
construct or the member function of the user object.

A transfer option can be enabled either till a particular date or forever. The method of
the TransferOption construct is overloaded to support both.

//To enable a transfer option forever
WebCallResult res = opt.enable();

//To enable a transfer option till a particular date
//The date which is passed in the function should be
//a UTC date. So whatever date is there as per your system
//convert it to UTC and then pass it to the function
Date d = new Date(); ///The date as per your system timezone

 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 df.setTimeZone(TimeZone.getTimeZone("GMT"));

String s = df.format(d);

21

WebCallResult res = opt.enable(df.parse(s));

Update transfer option
A subscriber can update various properties of a transfer option. Here in the example the
transfer option is updated to make it perform a supervised transfer to extension
123456, when in use.

//To update a transfer option
opt.setExtension("123456");

 opt.setAction(TransferActionType.Transfer.value());
 opt.setTransferType(TransferType.Supervised.value());
 WebCallResult res = opt.update();

Directory
Library also provides functionality to search the addressable objects that can be used to
send messages, to be added to private list etc. The objects can be searched by name,
extension or both and matching criteria can be exact match or starts with.

A search returns an Addresses object which contains a list of all the addressable objects
in the form of Address objects.

If all the objects having names starting with “User” need to be searched, can be done
in this fashion:

Addresses add = Directory.getAddressableObjects(server,
Directory.SearchType.STARTSWITH, Directory.SearchBy.NAME, "User");
 if(add.getWebCallResult().isSuccess()){
 List<Address> list = add.getAddress();
 for(Address a: list){
 a.dumpAllProperties("-->");
 }
 }
 else{
 add.getWebCallResult().dumpAllProperties("-->");
 }

If all those objects need to be searched which are having name or extension starting
with 1, it can be done in this fashion.

Addresses add = Directory.getAddressableObjects(server,
Directory.SearchType.STARTSWITH, null, "1");

22

AlternateName
There is provision for every user to have a first and last name in the system. A user can
have alternate first and last names. Those are the classes which deal with the alternate
names of the user.

Fetch the list of alternate names
To fetch alternate names for the user 2 constructs are available:

Get the list from the user object:

//Fetch all alternate names for the user using member function in user
construct

 AlternateNames names = user.getAlternateNames();
log.info(names);

There is a static construct also available for the same operation

 //Fetch all alternate names for the user using static function
 AlternateNames names = AlternateName.getAlternateNames(server);
 log.info(names);

Now this list can be traversed for getting individual names.

 //Traverse through the fetched names
 List<AlternateName> nameList = names.getAlternateName();
 for(AlternateName name : nameList){
 log.info(name);
 }

Create an alternate name
To create an alternate name for a user following constructs can be used:

Call a function on the user object.

//Create an alternate name
 String objectId = "";
 WebCallResult res = user.createAlternateName("Test", “Guy”);
 if(res.isSuccess()){
 objectId = res.getObjectId();
 log.info("Created object id::" + objectId);
 }
 else{
 log.info(res);
 }

Use static function to create a new alternate name.

//Create an alternate name
 String objectId = "";

23

 WebCallResult res = AlternateName.createAlternateName(server, "Test",
“Guy”);
 if(res.isSuccess()){
 objectId = res.getObjectId();
 log.info("Created object id::" + objectId);
 }
 else{
 log.info(res);
 }

Fetch details of an individual alternate name using the object id.

//Fetch details of an alternate name using its object id
AlternateName d = AlternateName.fetchDetailsForAlternateName(server,
objectId);
d.dumpAllProperties("-->>");

Sometimes it may seem unwanted to create an object and the fetch it in different steps.
This construct has a function from which an alternate name can be created and fetched
in a single step. Internally it will also send two different requests to the server but it
definitely saves some code lines.

//Create and fetch details of an alternate name simultaneously
AlternateName name = AlternateName.createAndFetchAlternateName(server,
"Test", “Guy”);

if(name.getWebCallResult().isSuccess()){
 log.info(name);
 }
 else{
 log.info(name.getWebCallResult());
 }

This can be done from the user object as well.

//Create and fetch details of an alternate name simultaneously
AlternateName name = user.createAndFetchAlternateName("Test", “Guy”);

Modify alternate name
There are two ways to modify an alternate name.
One is to directly set the properties of an alternate name and call the update method
on it.

//Update the alternate name
 d.setFirstName("Test");
 d.setLastName("Guy");

WebCallResult r = name.update();
 if(r.isSuccess()){
 log.info("Alternate name successfully updated");
 }
 else{
 log.info(r);
 name.clearPendingChanges();
 }

24

In the second approach, the alternate name can be updated using the static method
present in the AlternateName class by passing the properties to be updated in the form
of a Map where the key is property name and the value is the property value to be
updated.

//Update the name
 Map<String, String> props = new HashMap<String, String>();
 props.put("FirstName", "Testing");

 WebCallResult result =
AlternateName.updateAlternateName(server, objectId, props);

 if(result.isSuccess()){
 log.info("name successfully updated");
 }

Delete alternate name
To delete an alternate name also, there are two constructs available.
One is to call the delete function on the AlternateName object.

//Delete the name
WebCallResult result = name.delete();

 if(result.isSuccess()){
 log.info("name successfully deleted");
 }
 else{
 log.info(result);
 }
Other approach is to use the static method on AlternateName class by passing the
objectId of the alternate name.

//Delete the name
WebCallResult result = AlternateName.deleteAlternateName(server,

objectId);
 if(result.isSuccess()){
 log.info("name successfully deleted");
 }

AlternateDevice
Every user has a primary extension associated with it in unity connection. There can be
other extensions (mobile, home phone etc.) which can be called as alternate devices
(alternate extensions). The access to alternate devices depends upon the COS setting
for it. The four levels of access are:

• No access
• Read access to administrator-defined alternate devices only
• Read/Write access to user-defined alternate devices only
• Full access (read access to administrator-defined alternate devices and

read/write access to user-defined alternate devices)

25

NOTE: Since the design pattern is same for all the APIs, from here on, only
the methods on user object will be mentioned in the document. The static
methods can be seen in the java-docs.

Fetch alternate devices for the user:

//Fetch all alternate devices for the user using member function in
user construct

 AlternateDevices devices = user.getAlternateDevices();

Now this list can be traversed for getting individual devices.

 //Traverse through the fetched devices
 List<AlternateDevice> deviceList = devices.getAlternateDevice();
 for(AlternateDevice device : deviceList){
 log.info(device);
 }

Create an alternate device:

 WebCallResult res = user.createAlternateDevice("12345", null);
 String objectId = res.getObjectId();

Fetch details of an individual alternate device using the object id.

//Fetch details of an alternate device using its object id
AlternateDevice d =
AlternateDevice.fetchDetailsForAlternateDevice(server, objectId);

A device can be created and fetched in a single step as well.

//Create and fetch details of an alternate device simultaneously
AlternateDevice device = user.createAndFetchAlternateDevice("4358595", null);

Modify an alternate device:
//Update the device

 device.setDtmfAccessId("7465767");
 device.setDisplayName("abcd");

WebCallResult r = device.update();

Delete an alternate device:

//Delete the device
WebCallResult result =

AlternateDevice.deleteAlternateDevice(server, objectId);

26

HtmlDevice
Every user can have html notification devices using which the HTML notifications
(Intelligent notifications as they are called), can be received on an email address.

An END User does not have the privileges to create and delete the HTML device, only
view and modify privileges are there. The creation and deletion is allowed to the
administrators only.

The Html devices can be fetched as follows:

 HtmlDevices list = user.getHtmlDevices();

This list can be traversed for getting individual devices.

 //Traverse through the fetched devices
 List<HtmlDevice> deviceList = list.getHtmlDevice());
 for(HtmlDevice device : deviceList){
 log.info(device);

}

Fetch details of an individual html device using the object id.

HtmlDevice d = HtmlDevice.fetchDetailsForHtmlDevice(server, objectId);

Modify the html device:
 //Update the html device

d.setSmtpAddress("myaddress@foo.com");
 d.setActive(true);
 WebCallResult res = d.update();

UserExternalServiceAccount
A user may have zero or more unified messaging service accounts (also known as
external service accounts). Examples of these services include Cisco Unified
MeetingPlace 8.x, Exchange 2003, Exchange 2007, Exchange 2010 or Office 365. A
subscriber can do following operations:

• Retrieve a list of its unified messaging service accounts
• Retrieve one of its unified messaging service accounts
• Change the password for one of its unified messaging service accounts

Only an administrator can create or delete an external service account.

27

The accounts can be fetched as follows:

 UserExternalServiceAccounts list =
user.getUserExternalServiceAccounts();

This list can be traversed for getting individual accounts.

 //Traverse through the fetched devices
 List<UserExternalServiceAccount> accountList =
list.getUserExternalServiceAccount());
 for(UserExternalServiceAccount account : accountList){
 log.info(account);

}

Fetch details of an individual account using the object id.

UserExternalServiceAccount d =
UserExternalServiceAccount.fetchDetailsForUserExternalServiceAccount(server,
objectId);

Change the password of an account:
 //Update the account
 WebCallResult res = d.update(“newpassword”);

PrivateList
A subscriber can have private lists to create own groups of voice message recipients.
When a voice message is addressed to one of the private lists, all of the recipients on
the list receive the message.

Fetch private lists for the user:

//Fetch all private lists for the user using member function in user
construct

 PrivateLists lists = user.getPrivateLists();

Now this list can be traversed for getting individual private lists.

 //Traverse through the fetched private lists
 List<PrivateList> lists = lists.getPrivateList();
 for(PrivateList list : lists){
 log.info(list);
 }

28

Create a private list:

 WebCallResult res = user.createPrivateList("MyList", null);

 String objectId = res.getObjectId();

Fetch details of an individual private list using the object id.

//Fetch details of a private list using its object id
PrivateList d = PrivateList.fetchDetailsForPrivateList(server,
objectId);

A private list can be created and fetched in a single step as well.

//Create and fetch details of a private list simultaneously
PrivateList list = user.createAndFetchPrivateList("MyList", null);

Modify a private list:
//Update the private list

 list. setDisplayName("MyNewList");
WebCallResult r = list.update();

Update voice name for the private list:
 Using a local file:

WebCallResult res = list.updateVoiceName(“C:/test/local_file.wav”);

 Using a phone recording:

WebCallResult res = list.updateVoiceName(pc);

//Here pc is the PhoneRecording object which can be obtained as

described in PhoneRecording section.

Fetch voice name of the private list:
WebCallResult res = list.getVoiceName(“C:/test/server_file.wav”);

Delete a private list:

//Delete the private list
WebCallResult result = PrivateList.deletePrivateList(server, objectId);

PrivateListMember
Any user or system distribution list that is included in the directory can be a member of
the private list. The maximum number of members that a subscriber can add to a
private list is specified by the administrator.

Following are the various operations related to private list members:

29

Fetch all members of a private list
The members of a private list can be fetched using member function on a PrivateList
object or by static functions in PrivateListMember construct.

Using member function:

PrivateListMembers members = list.getPrivateListMembers();

Using static function:

PrivateListMembers members =
PrivateListMember.getPrivateListMembers(“43c86d14-4065-4a29-ae50-
82d4f5148749”);

Now this list can be traversed for getting individual members.

 //Traverse through the fetched members
 List<PrivateListMember> nameList = names.getPrivateListMember();
 for(PrivateListMember name : nameList){
 log.info(name);
 }

Create a private list member
To create a private list member for a private list, the member function on the private
list object can be used. The method accepts a map which contains the properties to be
assigned to the private list member.

//Create a private list member
Map<String, String> props = new HashMap<String, String>();
props.put("MemberSubscriberObjectId", “afa59a71-d06b-4d66-87d2-

75ff0597be6f”);

 WebCallResult res = list.createPrivateListMember(props);

Fetch details of an individual private list member using the object id.

//Fetch details of a private list member using its object id
PrivateListMember member =
PrivateListMember.fetchDetailsForPrivateListMember(server, objectId);
d.dumpAllProperties("-->>");

Those two steps can be done with a single function call.

//Create and fetch details of a private list member simultaneously
PrivateListMember member =
PrivateListMember.createAndFetchPrivateListMember(server, props);

30

Delete private list member
To delete a private list member, call the delete function on the PrivateListMember
object.

//Delete the name
WebCallResult result = member.delete();

 if(result.isSuccess()){
 log.info("name successfully deleted");
 }
 else{
 log.info(result);
 }

SmtpProxyAddress
A subscriber can have email addresses which are not its primary smtp address.

Fetch smtp proxy addresses for the user:

//Fetch all addresses using member function in user construct
 SmtpProxyAddresses addresses = user.getSmtpProxyAddresses();

Now this list can be traversed for getting individual proxy address.

 //Traverse through the fetched smtp proxy addresses
 List<SmtpProxyAddress> list = addresses.getSmtpProxyAddress();
 for(SmtpProxyAddress add : list){
 log.info(add);
 }

Fetch details of an individual smtp proxy address using the object id.

//Fetch details of an smtp proxy address using its object id
SmtpProxyAddress address =
SmtpProxyAddress.fetchDetailsForSmtpProxyAddress(server, objectId);
address.dumpAllProperties("-->>");

References

1. http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_Provisioning_Interface_%28CUPI%29_A
PI_--_For_End_Users

2. http://www.ciscounitytools.com/CodeSamples/Connection/CUPIForUsers/CUPIForUsers.html

http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_Provisioning_Interface_%28CUPI%29_API_--_For_End_Users
http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_Provisioning_Interface_%28CUPI%29_API_--_For_End_Users
http://www.ciscounitytools.com/CodeSamples/Connection/CUPIForUsers/CUPIForUsers.html

	Overview
	Integration
	The library
	ConnectionServer
	WebCallResult
	PagingData

	PhoneRecording
	Create a recording
	Play recording

	User
	Voice name
	PIN and Password

	Greeting
	Fetch user greetings
	Disable greeting
	Enable greeting
	Customized greeting recording
	Update greeting

	Messaging
	Fetch message list
	Fetch message count
	Send message
	Fetch message details
	Update message properties
	Delete message

	CometNotification
	Subscribe
	Receive events
	Un-subscribe

	TransferOption
	Fetch transfer option
	Disable transfer option
	Enable transfer option
	Update transfer option

	Directory
	AlternateName
	Fetch the list of alternate names
	Create an alternate name
	Modify alternate name
	Delete alternate name

	AlternateDevice
	HtmlDevice
	UserExternalServiceAccount
	PrivateList
	PrivateListMember
	Fetch all members of a private list
	Create a private list member
	Delete private list member

	SmtpProxyAddress

	References

