2What Is Audio Text?

2The Basics

3Call handlers

3Profile

6Call Transfer

11Greetings

14Caller Input

17Messages

18Call Handler Flow

21Transfer Rules

23Greeting Rules

23After Greeting Action

24After Message Action

24Subscribers

24Interview Handlers

27Directory Handlers

32Routing Rules

33Checking Your Sources

36Understanding Rule Order

38Extension remapping

39A word about Languages, Prompts and Greetings.

41A Word about the Default Configuration of Unity

43Scenario Examples

43Audio Text Manager

44Basic Audio Text Application

49Transferring To External Numbers

50Locking Down Handlers and Subscribers

50Error Greetings

52Restricting Dial Options

54Changing greetings for call handlers over the phone

55Multiple Language Applications

57Group Mailboxes

59Find first available extension (Poor Man’s hunt group)

60Holiday greetings

62Separate caller input options for day and off hours schedules

63Separate transfer rules for subscribers

64Working around forwarding transfer rule over ride

65Send directly to greeting from the operator console

66Tenant Services

69Customizing Unity Prompts

69“Please hold while I transfer your call”

70“You may record your message after the tone, stay on the line for more options”

71Directory Handler name spelling options

71Call traffic reports

72Troubleshooting and Damage Control

72Damage control

72Backups

73Reconstruct default objects

75Reconstructing the default Routing Rules

75Reconstructing the default Schedules

76Troubleshooting

76Event log

77Call Viewer

77Status Monitor

What Is Audio Text?

The term “audio text” is one of those things that gets thrown around quite a lot but it’s meaning changes depending on who you’re talking to. As I use it here, audio text encompasses everything you can do with a phone call in Unity other than leaving and retrieving messages. Routing calls to other subscribers, ringing phones, finding subscribers in the directory by name, navigating trees of prerecorded greetings and options all fall into the category of audio text by my definition. I also lump in the more common “auto attendant” capabilities here. This simply means Unity is capable of acting as the primary entry point for callers into a company instead of a human operator having to field all calls or requiring DID integrations only. I consider auto attendant functionality to be a strict subset of the larger audio text definition.

Unity has a much more fully featured set of audio text capabilities than many people realize since our documentation and training tend more to the installation, integration and support end of things than to detailed investigation into audio text matters. You can make “trees” of menus and options as deep as you like, optionally allow users to exit those trees, try extensions or “trap” them in the tree till they submit to your wishes. Unity is also capable of providing call screening and call holding capabilities for subscribers, offers “interviewing” capabilities and, with the release of 4.0(1) can also handle any number of name lookup handlers that can provide search capabilities across any number of cross sections or the entire corporate directory if you wish.

It is not, however, capable of doing full Integrated Voice Response (IVR) type applications. Unity is restricted to using a set of objects discussed below with prerecorded greetings and options you decide on and cannot dynamically retrieve information from external sources or push data to external systems based on user response or the like. If you need to provide a system that gives user’s their bank balance, for instance, you’ll need to use a proper IVR application such as Cisco IP IVR system (it’s URL?)
The Basics

For the most part we’ve been trying to avoid rehashing material that’s readily available in the excising Unity documentation and present new information or provide a different perspective on the material. In the case of the audio text components of Unity, the administration guide gives pretty light coverage so we’ll be covering some of the more basic concepts here up front first. We’ll start by reviewing the objects as they’re seen in the SA interface and then move on to discussing how they are used later in the chapter. We’ll also take a quick look at the Audio Text Manager interface which is an alternative to using the SA to managing audio text applications which makes much quicker work of constructing complex trees than using the SA.

Call handlers

The primary object you’ll use in most audio text applications is the call handler. This object is capable of ringing phones, playing pre recorded messages (greetings) to callers, acting on caller input, taking messages for one or many subscribers and transferring callers to other handlers or subscribers in the system. There’s no licensing restrictions on the use of call handlers so you can create as many of them as you like. I’ve created in excess of 10,000 handlers on test systems and since they aren’t represented in the directory (i.e. they are only stored in the local SQL database on the Unity server they are created on) there was no performance problems to speak of. The SA interface for finding and editing call handlers is a little clumsy for databases of that size, admittedly, but the Audio Text Manager (ATM) tool that ships with Unity 3.1(3) and later makes creating and editing large numbers of handlers much easier. We wont cover the use of the ATM tool in detail here, you can visit it’s home page to get the tool, detailed help and training videos on how to use it. You can find the latest ATM version (and all other Unity tools created and maintained by the Customer Applications Team) at http://www.CiscoUnityTools.com.

The fact that handlers aren’t replicated in the directory is an important note. This means that unlike subscriber information, audio text information is not shared between Unity servers on the same network. As such if you have multiple Unity servers working together to handle calls for an installation you will have to replicate your audio text information between those servers on your own. Currently there’s no tool that can copy call handler data or audio text “Trees” and duplicate them on other servers, although the Customer Applications Team has this on the list of items to tackle as part of updated versions of the Audio Text Manager. Dealing with all the inbound and outbound links for call handlers in such a move is complex, as you’ll see in the Administering Unity Programmatically chapter when we cover some of these issues. This is something to keep in mind when deciding how to deploy multiple Unity servers in a site – it’s a good idea to try and have a single box dedicated to audio text applications and spread the subscriber load across other servers in the network. This will greatly reduce the overhead in creating and maintaining complex audio text applications.

Lets cover the high level call handler properties visible in the SA, starting with the profile page.

Profile

[image: image5.wmf]Transfer

Rules

Greeting

Rules

After

Greeting

Action

Hangup

Goto

Hanlder/

Interviewer/

Subscriber

Take Message

After Message

Action

Hangup

Goto

Hanlder/

Interviewer/

Subscriber

Subscriber

Sign in

Subscriber

Sign in

User Input

Rules

Attempt

Transfer

Send To

Greeting

Figure 7.1

This page shows the basic top level information about a call handler.

The “Name” field, of course, is what shows up in the administration interface and is how you search for a handler by name. However this is also it’s unique alias in the CallHandler table in the UnityDB SQL database. For this reason the names of all call handlers on a local Unity box must be unique. Primary Call Handlers (those handlers associated with subscribers) use “ch_” followed by the alias of the subscriber they’re tied to. So “ch_lindborg” would be the alias for my primary call handler. Primary call handlers don’t have display names since they don’t show up in the interface on their own, their information is shown on the subscriber pages in the SA.

The “Created” field is the time and date the handler was created – it’s a read only property.

The “Owner” is an interesting field. The owner can be set to either a subscriber or a public distribution list that has been “imported” into the local Unity server’s SQL database. While this field has been around since the very first version of Unity was released, it has been completely meaningless until the release of 4.0(1). The original intent behind the owner concept was that we could allow users to update call handler properties over the phone if they were the owner or a member of the distribution list that was the owner and, eventually, provide a class of service flag that would allow users access to objects in the SA that they owned and not others. This was one of those items that didn’t get done in the first few rounds of development and got back-burnered. Unfortunately the owner properties was enforced by the conversations in Unity even if it had no useful purpose. As such if you deleted a subscriber that was listed as the owner of a call handler, when a caller accessed that handler over the phone the call would be terminated with the “fail safe” conversation (i.e. ”I’m sorry, I can’t talk to you now…”). The wisdom of this aggressive enforcement of a field that had no utility is left as an exercise for the reader, however as of 4.0(1) the owner filed DOES have some meaning, at least for call handlers. If you are listed as the owner or are a member of the public distribution list that is listed as the owner of a call handler, you are allowed to change the greetings for that call handler from over the phone. Finally! Previous to this there was no way to edit call handler greeting other than via the SA interface which means, for instance, companies could not change the opening greeting’s message unless they had SA access. Many sites have resorted to using subscribers in place of call handlers for the opening greeting duties for this very reason – burning a user license to do it. We’ll cover the use of this special “Greetings Administrator” conversation used to record handler greetings in the examples section later in this chapter.

The voice name field is primarily used as a means for identifying which call handler a message was routed to a subscriber through. For instance if a company had a dozen call handlers setup and all of them left their messages in a subscriber’s box, when they call into hear those messages they will be identified as being “from” the voice name of the call handler they were left for. Outside of that the voice names for call handlers don’t get used much since outside callers or subscribers can’t search for call handlers by name or the like.

The “Active Schedule” field indicates what times this call handler considers “standard” (business hours) and what times are considered “closed” (after business hours). Back in the old days these were referred to as “day” and “night” schedules but in this 24/7/365 kinda world night time is not necessarily “closed” time for businesses. The schedule comes into play when deciding which transfer rule and/or which greeting rule to trigger when callers reach the call handler.

The “Extension” field is a 3 to 30 digit extension that can be assigned to the handler and is optional. In most cases sites that use large numbers of call handlers to create complex audio text trees don’t want to clutter up the numbering space in their system by assigning extension numbers to these handlers. The only time you’d want to have an extension number in here is if you wanted callers to be able to dial the ID of a handler directly from the opening greeting, for instance, or if you want to have a call handler dealing with calls forwarded from a specific phone extension into Unity.

The “Language” field indicates what language the system prompts will be played in to callers reaching this handler. It’s important to note, this ONLY affects the system prompts that make up the conversation (i.e. “I’ll transfer you now” and “please hold on while I transfer your call” etc.). The bulk of what callers hear are the custom recorded greetings by the customer and there is only one set of those for each call handler. This means you need separate sets of handlers to deal with each language you want to support. Also of note here, by default the language is set to “inherited” as shown in figure 7.1. This means that whatever language the call has been set to is the language the call handler will use. Unity employs a “tag you’re it” language model where a call can be “tagged” with a language when it enters the system and that language will follow the call until it hits an object (such as a call handler) that’s set to a specific language. Then the call is “tagged” with that language until it runs into another object set for a specific language. This is important for folks designing multiple language audio text applications and we’ll cover the details of this process in the scenarios section later in this chapter.

The “Switch” field indicates which phone switch the call handler is associated with in the case that Unity is configured for dual switch support. Unity knows which switch an inbound call is associated with and if the call handler is associated with the other switch, it knows it needs to use the prefix (if defined) for sending calls from one switch to the other or vice versa. This is necessary if a call comes in on a Call Manager line, for instance, and the call handler is setup to ring the phone on an analog PBX extension (see Call Transfer section next). This value defaults to the first switch (switch “0”) defined in the system.

Call Transfer

[image: image6.wmf]Transfer

Rules

Greeting

Rules

After

Greeting

Action

Hangup

Goto

Hanlder/

Interviewer/

Subscriber

Take Message

After Message

Action

Hangup

Goto

Hanlder/

Interviewer/

Subscriber

Subscriber

Sign in

Subscriber

Sign in

User Input

Rules

Attempt

Transfer

Send To

Greeting

Figure 7.2

We’ll talk a little about when and how the transfer rules are processed for call handlers and subscribers a bit later in this chapter. For now I’ll just define the options here.

The enabled and disabled radio buttons should be reasonably obvious. However notice in the screen shot above the buttons are disabled and “Enabled” is set. This is because the selected transfer rule is “Standard” which can never be disabled. For call handlers there are three transfer rules: “Standard”, “Off Hours” and “Alternate”. Both off hours and the alternate rules can be enabled/disabled as desired however at least one transfer rule must always be active to tell Unity what to do with the call should it enter the transfer conversation for this call handler. The Standard rule, then, is treated as the “backstop” transfer rule and is always enabled. A similar principal applies to greeting rules which we’ll cover in a bit.

Note that on the subscriber page in the SA the transfers don’t show a drop down list to select one of the three. This is because subscribers are limited to one transfer rule that’s either on or off, they do not have a selection of three like application call handlers have. This was done originally to simplify the subscriber options conversation and it’s another one of those things that needs to be updated that just hasn’t been gotten around to. This is the only thing you can do with call handlers that you can’t do with subscribers and can sometimes be an annoying limitation to have to work around. We’ll cover such a scenario in the examples section later.

The “Transfer Incoming Calls?” section lets you decide if Unity will attempt to ring a phone, which number to dial or to skip the transfer attempt entirely and proceed onto the greeting rules. Note that you can stick any number you want in the transfer string, including long distance or international numbers, provided the “Transfers” restriction table associated with your Class of Service allows it. This is an important concept and is probably one of the most commonly misunderstood parts of the Unity administration design. The restriction tables are enforce ONLY at the time the number is changed and the restriction tables of the person MAKING THE CHANGE are what Unity uses to test against. Once a number is in a notification delivery dialout, transfer or fax delivery number field, Unity will use it. It is not checked again at dialout time or any other time. In this way individual subscribers can be restricted from making any changes, if desired, and administrators (who presumably have highly flexible restriction table settings) can adjust various dailout numbers in the SA as desired. If you trust your users, you can give them options to change their own numbers if you wish but this model is built around the idea that sites normally restrict end users from such things and expect administrators to be trustworthy folks.

The Transfer type field tells Unity to either dial the number and hang up (release) or stay on the line to see if the called number answers or not (supervised). Supervised transfers are useful in that they offer some nice features like call screening and call holding, however they also tie up voice ports longer. Many sites prefer to have Unity release the call to the switch as quickly as possible. If the transfer type is set to release, the remainder of the options on this page are disabled since they don’t apply.

The rings to wait for supervised transfers indicates how long Unity will wait before deciding a phone is not answered and will pull the call back. This value must be at least two but it’s advisable to have more rings than that, of course. If you have your phone system set to forward to voice mail on a Ring No Answer condition you’ll need to make sure Unity is set to ring fewer times than the phone system is set to forward on or you can potentially get Unity talking to itself. You’ll also want to remember not to set the phones to forward on busy when using supervised transfers since, again, you can end up forwarding the phone right back to Unity in this scenario.

The “if the call is busy” option allows Unity to hang onto the call and play a series of hold music prompts (recorded classical music). After each hold music prompt is played, roughly 30 seconds a shot, Unity will check the line again to see if the phone is still busy. If not, the call goes through, if so Unity will ask the user if they would like to continue holding. There’s no way to turn off the option where Unity prompts the user to stay on the line. This is designed to make sure someone doesn’t tie up a voice line for overly long. In general if your phone system can handle queuing calls up, it’s highly recommended that you make use of that and don’t use voice mail ports to do call holding. This option is generally there for smaller phone systems that don’t offer holding services. It should be noted, since this comes up from time to time, you can’t use Unity’s call holding feature if your phones are set to forward on busy. Again, for Unity to know the phone is busy we have to get “busy” back from the switch and if the phone is set to forward somewhere we may not get that.

The Gather Caller information section is made up of 4 options:

Announce. If this is checked Unity will play a short beep tone when the subscriber answers their phone. This is to warn them that it’s an external caller coming through the auto attendant and not Bob down the call who wants to hear you scream “whatsuuuuup!” into the phone.

Introduce . If this is checked Unit will play the voice name of the subscriber the call is for (“call for <voice name>”). This is used in situations where you have more than one subscriber sharing the same phone extension.

Confirm. If this is checked, the subscriber is asked if they want to take the call or send it to voice mail before the call is released to their extension. This is normally used in conjunction with the Ask Callers Name option so you know who’s calling and can decide if you’re up to talking to them or not. If the call is rejected, Unity smoothly lies to the caller and tells them you’re busy or away from your phone. We got your back.

Ask caller’s name. With this checked, Unity will ask the caller to speak their name before ringing the subscriber’s phone. This recorded name (presumably they said their name - not always the case) is played to the subscriber before the call is released to their extension. Normally this is used in conjunction with Confirm so the subscriber can accept or reject the call.

Subscribers cannot change their own transfer type via the PCA (Personal Communications Assistant) web interface so the holding and gather caller information options will not be enabled on their individual interfaces unless the administrator has set their transfer type to “supervised”. This is done since admins usually want to control features like this that can chew up voice mail ports on their system and restrict who can use them.

Black Belt Tip: There’s a little known and undocumented feature on the transfer page having to do with the ability to insert replacement “variables” into the transfer string itself. You can include the forwarding station number, the calling number, dialed number, trunk or the voice mail port number into the dial string itself. To do this you’d make the dial string look like this:

“123,%Port%456”

Assuming the call came in on port 7 the resulting dial string Unity would actually send when transferring the call would be “1237456”. Here’s a list of all the valid replacement variables you can use (these are case sensitive and need to be bounded on either side by “%” as shown above):

"Forwarding_Station"

"Calling_Number"

"Dialed_Number"

"Trunk"

"Port"

"Extension"

If you want to get only the left most or right most X digits, you can do that by inserting a number after the left or right “%” character respectively. For instance if you wanted to include the rightmost 4 digits from the dialed number you would include this in your dial string: “%Dialed_Number4%”. Only a single digit is allowed on either side or the other and you can only get left OR right, you can’t get, say, the left most 2 digits and the rightmost 2 digits from the same number. The SA will complain if you try to enter that.

If the value for the variable you include is not provided by the switch integration or is blank for that particular call, Unity just inserts nothing and dials the remaining digits defined in the string. If there are no other digits in the string the transfer will simply not be attempted and Unity will proceed as if the call were RNA. This can cause problems with busy futures and the like so use this feature with caution and definitely test out what the switch is sending us in all cases to be sure you know how it’ll behave.

I know what some of you are thinking: “Cool! I can stuff these same variables in my tone or text pager notification devices.” Yeah, that would be cool but no, you can’t do this. These variables are only active on live calls and are not stored with the message which is what activates the notification dialout. The calling number is included in the subject line of the message and it would be possible to dig that out and offer it as an option in the information included in pages but that’s not available today. Even cooler would be the option to have a conversation ASK the caller what number they can be reached at if the subscriber wants that and include that in the page. These type of “find me follow me” features are all on “wish lists” at the moment, I can’t say when they’ll hit the streets. As usual, ping your account team and let them know which types of such features are important to you so they get prioritized appropriately.

Another important limitation to note about this. The SA still enforces the 30 character limit for transfer strings which will include all the characters in the variable name. As such if your transfer string included “%Forwarding_Station%”, you’ve chewed up 20 of your 30 characters right off the bat. You can insert more than one variable into the string if you like, but you’ll quickly run out of available digits allowed in the string so this isn’t terribly practical and I have a hard time coming up with a scenario where this would be necessary.

Greetings

[image: image1.png]Handler: Goodbye*

Standard =

Standard

Status:
& Enabled
€ Disabled

Source:

 System

 Blank
During greeting:
P Allow caller input

After greeting:
€ Take message
€ Say goodbye

& Send caller to [Hang up 5l | Eelee

I~ Reprompt the user after this many seconds of silence: [=]

Nurber oftimes to reprampt [| =]

Figure 7.3

After a transfer attempt fails Unity proceeds to the greeting rules. A caller can also be routed directly to the greeting rules in some cases and skip the transfer attempt altogether. We’ll talk about this in a bit when we discuss call flow through the handlers.

There are six greetings for each call handler in the system, although by default only 5 show up in the SA. The usual list of greetings includes Alternate, Standard, Off Hours, Internal and Busy. The Error greeting is the sixth and is hidden by default since it tends to be a confusing concept for folks and it’s reasonably rare you need to edit it in most cases. You can expose it in the SA by using the Advanced Settings Tool if you want to see it. The error greeting is exposed in the Audio Text Manager all the time. You can also get at it in the BulkEdit utility which offers some options for changing it’s behavior across groups of subscribers and/or call handlers.

The enabled and disabled radio buttons should be reasonably obvious. Notice again in Figure 7.3 that the buttons are disabled and the “Enabled” option is set. Similar to the transfer rule behavior discussed above, this is because the selected greeting rule is “Standard” which can never be disabled. One greeting must always be active and serve as the “backstop” and that’s the standard greeting here. Error greetings cannot be disabled either but that’s because they serve a special purpose and are not included in the normal hierarchy of greeting rules precedence the other 5 greetings are in. We’ll cover the order precedence of the greetings and the function of the error greeting in the call flow section later.

The source section indicates what Unity should play to the caller when this greeting rule is invoked. The System option means Unity will construct a prompt using the voice name of the subscriber or call handler (if present) or the extension number if it’s not there or, failing both of those, the voice name or extension of the message recipient for the call handler. It’s a generic sounding “Jeff Lindborg is busy or not available…”. The Recording option is just what it sounds like, a custom recorded greeting that is played to callers. Blank means just that, no greeting is played and the system skips right to the after greeting action. This is useful for various call flow scenarios where you’re using call handlers to route calls around the system. We’ll cover a couple of these scenarios in the examples section later.

The Allow caller input option is a short hand way of turning off all user input keys while this greeting is active. This option affects only the current greeting so you can, say, have a standard greeting that allows user input the closed greeting can have it turned off. Remember all greetings share the same set of user input keys, there are not separate sets of user input mappings. Turning this option off also restricts users from dialing other extension numbers while listening to the greeting.

The After Greeting Action determines what Unity will do with the call after the greeting defined in the Source section completes. Normally this is set to “take message” by default however you have the full compliment of routing options here and you can do anything from simply hanging up to sending the call to a call handler of your choosing to going to the subscriber sign in conversation.

The Reprompt section at the very bottom throws some folks, I’ve gotten a number of “bug” reports where Unity is playing the greeting multiple times. Part of the problem is this option is at the bottom of the greetings page which often doesn’t show up unless you scroll down to see it. This option is here if you are expecting an input from a caller and they don’t enter anything. By default this value is “0”, meaning the greeting will be played only one time and then the after greeting action is executed. You can wait a set number of seconds and then replay the greeting again, giving callers another chance to enter a selection provided in the greeting. You can set it to reprompt many times but once or twice is normally as many as you want. If someone can’t figure out what to do after three times through the greeting, it’s probably time to send them to a human operator for assistance.

Caller Input

[image: image7.png]Handler: Goodbye

Name: [Goodbye

Created: 06/0B/2002 11:14:37 AM

Owner: Exarnple Administrator Change
Owner type: | Subscriber <

b I ——
00 05 volme

B e 12 S0
Extension (optional): |
) T —
o |

Recorded voice:

Figure 7.4

The caller input page is probably the source of the most confusion and configuration errors that I’ve seen in the field. On it’s face the concept is very simple. You can define actions that Unity will take when user’s enter digits 0-9, * or # while listening to a greeting for this call handler or subscriber. The same set of key action mappings in this user input page are active for all greetings for the call handler (can you tell I get asked about separate key mappings for different greetings a lot?). We’ll cover one way to work around this limitation in the examples section later.

Typically the one key rules (as they are called internally) are used to construct trees of call handlers that users can navigate through to get at the information they want, leave a message for a group of folks, find someone in the directory or the like. These are, of course, at the heart of any robust audio text application. Beyond just linking to other handlers, you can have a one key action take a message, skip to the end of the greeting, send the caller to the sign in conversation, go to the new Greetings Administration conversation, etc… You have a lot of control with what you can do here.

Where things get tricky is allowing the callers to either enter one key options mapped to specific actions or “free dial” extensions of other objects in the database during the greeting. This is where the concept of “locking” a key down and fiddling with the interdigit delay come into play and some folks trip up. Here’s the short version:

If user input is allowed during a greeting (see the greetings page above) then the greeting will play through until a key is pressed by the caller. At this point (with one exception noted below) the greeting will stop playing and Unity will wait for the interdigit time out period – this is the “milliseconds to wait for additional digits” field at the top of the form. If no further digits are entered then the action that key is associated with is taken. If the action is “ignore” then Unity considers this an error and will send the call to the Error greeting which by default says “I’m sorry I did not hear that entry” and then sends the caller to the opening greeting call handler created by setup (this can be changed as noted later). If, instead, the user enters more digits Unity will continue collecting digits until the user stops for the timeout period or presses # to terminate the input process. Unity will then look that string of digits up in the database to see if any extension number for a call handler, interview handler, subscriber, or name lookup handler matches. If a match is found the call is sent off to that object. If no match is found then again, Unity considers this an error and sends the call to the Error greeting.

Easy as pie, right? Now, if a key is locked, this means if that’s the first digit the user enters to interrupt the greeting, the action the key is associated with will take place immediately without waiting for the inter digit time out for more digits to be entered. If the key’s action is set to “locked” AND “ignore” however, the key is thrown away and the greeting is not interrupted at all. This is a handy way to not allow outside callers to dial extensions that begin with a particular number. For instance if your engineers (who are clearly the most important people in your organization) all have extensions that start with 7 and you didn’t want outside callers being able to dial them directly you could set key “7” for locked and ignore for all call handlers in your audio text application and they would be unable to reach them by dialing their extension directly. There were bugs in earlier versions of Unity up through 3.1 where the “locked” keys would be acted on immediately even if they weren’t the first digit the user entered which caused all kinds of interesting issues. Those problems are resolved in 4.0.

The concept really isn’t that complex, it’s just a matter of understanding that the user input page affects both one key actions and the ability to dial extensions freely while the active greeting is playing.

One note on this page before we leave. The “Allow callers to dial an extension during the greeting” is simply short hand for locking all the keys. As such when a user enters a digit it’s acted on immediately and there’s never any period where Unity is waiting to see if you’ll enter more digits. This is different than unchecking the “allow user input” box on the greeting page. If you do that, it’s the same as locking all the keys AND setting them to ignore. No input is allowed at all and the greeting will never interrupt.

Messages

[image: image8.png]Handler: Goodbye* ®EBHH G

Call Transfer

Transfer Rule app

Standard

Status:

& Enabled
€ Disabled

Transfer incoming calls?
€ No (send directly to this handler's gresting)

C Yes, ring message recipient's extension: Example Administrator (39999)

& Yes, ting a subscriber at this extension: [3.52611

Transfer type:
@ Release to switch

 Supenise transfer

Rings towait or: [=]

Ifthe callis busy
€ Aways hold
© No holding
€ Ask caller

Gather caller information:
I Announce

I~ Introduce (call for name)
I~ Confirm (call can be accepted o refused)

I~ Ask callers name

Figure 7.5

The messages page is pretty straight forward. The primary input here is designating which subscriber or public distribution list should get messages if the call handler has an after greeting or a one key option set to take a message. Even if no option in the handler is configured to let callers leave a message, you still have to have a valid subscriber or distribution list designated here. The first thing Unity does when it loads a call handler is go fetch the recipient. If they don’t exist (i.e. you deleted the subscriber you had set as the recipient) then it’ll send the call to the ever-popular “failsafe” greeting and the caller will be sent to the opening greeting call handler (in 3.x and earlier they are simply hung up on) with some helpful information written into the application event log as to what happened. DbWalker is designed to help you run down and fix such broken links and deleting subscribers and handlers through the updated Global Subscriber Manager tool prevent such broken links in the first place.

The maximum message length does exactly what it says: you can limit the number of seconds a caller can record for. Note that this does not affect subscribers leaving messages for other subscribers. This value only affects outside callers leaving messages for subscribers. You can dictate how long a message any given subscriber can leave in their Class of Service on the “messages” page. By default all subscribers can leave 300 second (5 minutes) messages for other subscribers. If you would like to extended this or, more likely, trim it back, you can do that in the class of service settings.

Black Belt Tip: by default Unity will not warn callers when they are nearing the end of their record session. However you’ll find three settings in the Advanced Settings Tool that start with the string “Record Termination Warning” that you can turn on such that Unity will play a beep or a WAV file you dictate to callers when they approach the end of their recording leash. This only works with Call Manager switch integrations, Dialogic board drivers do not support this functionality.

The after message action section dictates what Unity will do with the caller after they have completed leaving their message. By default this is set to go to the “say goodbye” call handler. Notice that this section looks similar but not identical to the after greeting and user input action sections. There are fewer options here since after leaving a message, for instance, it doesn’t make sense to select “take message”. That’d be pretty obnoxious so we removed the option.

You can also decide if users can rerecord or append to their message with the “Callers can edit message” check box and decide if they can opt to mark the message urgent or not. The option to always mark messages urgent can be handy if you have a high priority after hours problem line. You can configure the handler such that all messages taken through it are marked urgent and, for instance, would trigger a pager dialout in the notification devices for the subscriber(s) getting messages from that handler.

Call Handler Flow

OK, we’ve run through the basic call handling elements that make up a call handler and subscriber object in the database, however the key to grasping how call handlers work is understanding how calls flow into, through, and out of them. Call handlers were built to be very sequential beasts which is not apparent just looking at the administration interfaces provided by the SA and the Audio Text Manager applications. Call handlers are the grandson of a “transaction box” provided in an earlier DOS based Repartee voice mail product. The old ASCI based interface actually showed this very intuitively where the transfer rules were on the left, the greeting rules were in the middle and the after greeting actions were on the right. You could see at a glance that calls flowed from left to right and then exited out. Of course there weren’t nearly as many options to deal with back then and everything fit on a couple of text based pages 80 characters wide, however it still occurs to me the clunky old interface was much more effective at conveying how these objects worked.

A call handler flows through 4 separate “stages” in its life cycle. Transfer rules (contact rules in the SQL database) are executed first then, if necessary, the greeting rules (messaging rules in the database) are evaluated followed by the after greeting action followed, if necessary, by the after message action. Figure 7.1 is a rather ungainly graphical representation of that flow.

[image: image9.png]Handler: Goodbye*

Caller Inpu

 Allow callers to dial an extension during gresting

Miliseconds to waitfor additional digits: [1600 =]

Key: 1
I Lock this key to the action (dont wat for an
additional keypress)

Action:

© lgnore key

Skip greeting

#[~|a]=
o|wm|an
#|o[a|a

®
€ Take message
€ Say goodbye

Send caller to [Hang up 5l | Eelee

o

Caller input map

[Key |Locked[Action
No [Send caller to Hang up
No | Ignore key
No | Ignore key
No | Ignore key
No | Ignore key
No | Ignore key
Ignore key
No | Ignore key
No | Ignore key
Yes |Send caler to Sign-in
Yes |Send caler to Attempt transfer for Operator
Yes |Send caller to Attempt transfer for Opening Greeting

[N
z

Figure 7.6

The first thing to notice is that there are exactly two entry points into a call handler. You can jump in at the top and start with the transfer rules or you can jump in right at the greeting rules. The idea here is that many times you want to send a caller directly to the greeting for a subscriber or a call handler without ringing their phone and sometimes you want to ring the phone. The default when you choose to send a call to either a call handler or a subscriber is to go directly to the greetings and skip the transfer rules. This throws a LOT of people off the trail. I’ve probably answered the question of “why isn’t the phone ringing?” as a result of this over 200 times in the last 3 years or so. This option is selected in the “conversation” drop down list when you choose which handler or subscriber you want to send the call to as shown in figure 7.7.

[image: image2.png]Call Handler Selection

Type name to find, then select from st

i

Matching Call Handlers

Goodbye

(Opening Greeting

Conversation: [Send to greeting for =)

ting for

[Atiempt ransfer for

Figure 7.7

If you leave the default of “send to greeting for” it will skip the transfer rules. If you select “Attempt transfer for” it will start at the top of the flow with the transfer rules. The choice of the term “conversation” here is questionable at best in my mind since it requires administrators to understand that these are actually separate conversations that are being invoked with the ID of the call handler being passed into it. This concept is not evident anywhere else in the administration interfaces and is not discussed in the documentation. Just remember that the “PHTransfer” is the “attempt transfer for” conversation and “PHGreeting” is the “send to greeting for” conversation. As you’ll remember from the object model chapter earlier (you read that, right?) the PH stands for Phone Handler – the original term for call handlers before we changed it prior to the release of 1.0.

Lets start at the top and work down through diagram 7.6.

Transfer Rules

At the top of the chart is the Transfer entry point. In the SA this is characterized with the “Attempt transfer for” selection noted in figure 7.7. In the database this is characterized using the PHTransfer conversation to get to the call handler. Remember that even when sending a call to a subscriber you still go to a call handler, it’s just the primary call handler associated with that subscriber record.

If the call handler is an application handler (i.e. a “normal” call handler as opposed to a “primary” call handler associated with a subscriber) then there are three rules that can be active here. The order of precedence is simple in this case. If the alternate transfer rule is enabled it will be the one evoked no matter what. It over rides the other rules and they will never be called until the alternate rule is disabled. After that if the schedule the call handler is associated with indicates it’s “after hours” then the off hours transfer rule will be triggered. In all other cases the standard contact rule will be the one used. Remember that you can’t disable the standard greeting so we can always count on it being there for our use.

Remember, however, that if the call handler is a primary handler tied to a subscriber, the alternate transfer rule is hard coded active and cannot be disabled. For subscribers transfer are very basic indeed: they are either on or off.

It’s very common for folks to fiddle endlessly with the standard contact rule and not realize the alternate rule is active and end up calling for help trying to figure out why Unity is being so obstinate and not transferring to the phone they want for this call handler. I normally recommend folks use the alternate transfer rule when testing call flows for this reason. That way you don’t have to worry about the time of day it is (frazzled field techs testing late at night often miss the fact that it’s not “day” any more) or which rules are enabled. With the alternate rule active, you know what you’re working with.

It should be noted here that it’s perfectly OK for a contact rule to do nothing but send the call to the greetings. I’m often asked if folks should send calls to the greetings directly in all cases or to transfer rules and I always advise them to send to the “attempt transfer for” if you ever think you might want to ring the phone. Then simply change the contact rules on the call handler in question to turn it on or off. If you have 100 call handlers sending calls to a handler’s greeting and then decide you want to have that phone ring during the day, for instance, you have a much bigger cleanup job on your hands. There’s no performance hit or the like jumping into the contact rules and falling through to the greeting rules.

There’s one scenario that will cause the transfer rules to be skipped that throws folks in the field off now and again. When a call forwards from an extension into Unity, by default Unity will search for the original forwarding extension among all call handlers and subscribers. If it’s found the call is sent directly to the greetings for that call handler, no attempt is made to go to the transfer rules even if they’re active. This is done such that Unity doesn’t get caught in a “transfer loop” where a call forwards into Unity and we forward the phone to the extension which, of course, then forwards back to us and so on. This will quickly chew through all your available ports and cause all kinds of problems. There are some special scenarios, however, where you want Unity to dial an extension in this case. We’ll cover a tricky way to get around this issue in the examples section later.

Greeting Rules

The greeting rules have a much more complex order of precedence. The five greetings used for handling incoming calls are processed in order from the top down. The first enabled rule in this list that matches the call criteria (if necessary) is used to handle the call.

· Alternate. At the top of the heap, of course, is the alternate greeting. Again, if it’s active all other greetings are ignored and this greeting will always play no matter where the call came from or what schedule the call handler is associated with.

· Busy. If the call forwards into Unity from a busy extension and, of course, the phone switch integration passes this information along accurately, and the busy greeting is enabled then it will be the one that handles the call.
· Internal. If the calling number is reported and corresponds to the extension (either primary or alternate) of a subscriber homed on the local Unity server it’s considered an internal call. If the internal greeting is active then it will be used to handle the call. The internal definition is important, it doesn’t actually mean the caller is on the local phone switch Unity is hooked up to, it means that the caller is a known subscriber to us. It also has nothing to do with the “origin” property on an inbound call which shows up in the call viewer as “internal” or “external”. It’s based solely on the calling number matching the extension of a known local subscriber. The idea here is that employees may want to give other employees different information in their greetings that they don’t want non employees getting (i.e. indicating where they REALLY are that week).

· Off Hours. If the schedule the call handler indicates it’s now “off hours” and this greeting is enabled then the off hours greeting handles the call.

· Standard. If all other rules are disabled or fail to match the call data, the standard rule is invoked. Remember that you can never disable the standard greeting (or shouldn’t be able to anyway) and Unity can count on this rule always being enabled.

Yes, there is the Error greeting but it’s not included in the flow of precedence here. The Error greeting is invoked only when the user enters an invalid selection or dials an extension number that doesn’t exist, it’s never used to handling incoming calls directly.

After Greeting Action

As the name would imply, this is the action Unity takes after the greeting is played. Each greeting has it’s own action field, of course, so you can do different things depending on which greeting is active for a given call. By default this is set to “take message” since most of the time that’s what you want to do. You can, however, do what you want with it like sending the call to another handler, hanging up, even going to the subscriber sign in conversation if you like. This becomes especially important when using a call handler as a “router” with a blank greeting which is handy for several scenarios we’ll cover in the examples section later.

After Message Action

After taking a message the default action is to go to the “say goodbye” call handler and hang up on the user politely. You can pick other actions, however the list is a little smaller here since you aren’t allowed to select “take a message” as the after message action – that be pretty annoying for callers.

Subscribers

This will be a very short section since subscribers and call handlers are almost identical with respect to their call handling characteristics. As was discussed in the Data Object Model section in chapter 3, subscribers are really two separate objects that work together. There’s a mail user object and it’s corresponding “primary call handler”. This is just a call handler that’s assigned to a subscriber and doesn’t appear in the call handler search dialogs. In all respects except one subscribers have the same call handling characteristics and capabilities as “regular” application call handlers do. A quick look at the SA interfaces for subscribers and call handlers will quickly show their call handling features are nearly identical with one exception.

That one difference, however, can be a real nuisance. Subscribers have only one transfer rule instead of the full three that regular call handlers do. Under the covers this is accomplished by forcing primary call handlers to always have their alternate contact rule enabled and this is the rule that’s visible on the SA interface for subscribers. It’s not possible to disable this or use the other two rules even if you hack around in the database on your own. Reaching back through the fog of history, the reasoning for this course of action is a little murky. It boiled down to the conversation folks wanting to keep the subscriber options as limited as possible and having to deal with three transfer rules instead of assuming one that is either on or off all the time simplified things a great deal. Backed up against a whole series of rather brutal “hard” schedule requirements, lots of little things like this got hacked out along the way. This is one of those things that was going to be addressed in the ever-present “later version” and just never got picked up. Some years later we still find ourselves with this state of affairs which is admittedly a bit frustrating since it’s often the case where a subscriber might want one phone to ring during the day and another to ring off hours which requires the use of an extra call handler to accomplish that now.

This is an item that’s on deck to finally get addressed in a later version. I swear. I just can’t say which one at the moment.

Interview Handlers

An interview handlers is a specialized handler that’s designed to interrogate a user for specific information so they don’t forget to provide, for instance, their product serial number, return phone number or whatever else you need callers to provide. An interviewer is considerably less complex than a call handler or subscriber since there’s no user input options, call transfer options or the like. This handler is, as they say, a one trick pony. The following shots show the only two screens you’ll see in the SA for these objects:

[image: image10.png]Handler: Goodbye*

Message recipient: | A selected subscriber x| Select

Exarnple Administrator

How to take messages
Maximum message length, in seconds: [300 =]

After message action:

€ Say goodbye

& Send caller to [Hang up 5l | Eelee

W Callers can edit messages
Mark messages as urgent?

© Aways

 Never

€ Ask caller for their preference

Figure 7.8

Most of the options shown on the profile page in figure 7.8 are identical to those found on the call handler or subscriber profile pages and mean the same thing. Like call handlers, you have owners and message recipients for interview handlers, however the owner does not have any special meaning in Unity for interviewers as it does for call handlers in 4.0(1) and later. Responses can, of course, be delivered to a specific subscriber or a public distribution list just like call handlers. Extensions are optional and are typically left blank. Normally interview handlers are reached via one key dial options or as after greeting action links or the like since it’d be pretty unusual to expect outside callers to dial an extension to reach an interviewer.

The only call routing option you have for call handlers is shown on the profile page at the very bottom there. You can decide where callers are sent after they finish leaving their message for the interviewer. By default this sends them to the Say Goodbye call handler created by the Unity setup, which is the same as the after message action defaults for call handlers and subscribers as well.

[image: image11.png]

Figure 7.9

The heart of the interviewer, however, is the list of questions played to callers and the time limit for their responses which is shown in figure 7.9. You can construct up to 20 separate questions that can be asked of callers in a interview handler, although expecting callers to sit through a grueling interrogation like that is probably a little on the optimistic side.

Callers will hear each question you record and will be given the number of seconds you dictate to record a response. If the user hits * or # (all other keys are simply ignored) during a response portion it will advance to the next question, it will not skip all the questions and advance to the after message action – essentially the caller is trapped in the interview handler until they give some response to each question which is one of the reasons why you probably want to keep the number of question to a reasonable limit. The questions are asked in the order they are listed in the drop down list in the screen shot above. In the SA, unfortunately, there’s no easy way to delete a question right out of the middle of the list or rearrange them in a different order or the like. The Audio Text Manager tool, however, allows for this.

The message is left as a series of WAV file attachments, one for each question. Even if the user is silent or presses # immediately, a WAV file attachment will be included for that question. The one exception to this is the last question asked: if the user presses * or # right away the last question wont be included. The reasons behind this behavior are a mystery to me, but that’s how it is. Figure 7.10 shows a screen shot of what you’d see in Outlook with VMO installed if a message for an interviewer were delivered to your inbox:

[image: image12.png]DD

Example Interview

Name: [Example Interview
Owner: Exarnple Administrator Change

Created: 0/0B/2002 11:14:28 AM

> ue?
Recorded voice: ¥ | b 00 volme

Extension (aptional)
Language: [Inherited =

Caller response options:

Deliver esponse to: [Subscriber 7] _Change

Exarnple Administrator

Response urgency:
© Mark urgent
& Mark normal
© Ask Caller

After interview actiol

& Say goodbye

€ Send callerto [Call handler 7] Select Call Handler

Attempt transfer for Goodbye

Figure 7.10

The media master control in the VMO form will automatically append all the WAV files together into one file so the 7.3 seconds shown in figure 7.10 is the cumulative total for all three answers attached to the message. When you call in over the phone to listen to your messages, the answers are played with a beep tone inserted between each answer to help distinguish between responses and more easily identify blank responses. When playing back via the VMO form or via the PCA web based inbox view these beeps are not inserted.

Directory Handlers

A Directory Handler is a mechanism by which callers can find subscribers in the directory by spelling their name either starting with the last name or the first name. These are also sometimes referred to as “Alpha Directories” and are referenced internally as “Name Lookup Handlers” in the SQL database.

In versions of Unity prior to 4.0(1) there was only a single, hard coded Directory Handler. You could select to enter first or last name first when searching for a subscriber and in 3.0(1) and later you could choose to limit subscribers included in the search to those on the local Unity server or all subscribers on all Unity servers in the same dialing domain. You had some list presentation options you could fiddle with, however that’s as much customization as you had at your disposal and you could not create additional directory handlers.

Big changes in the 4.0(1) release came to the directory handlers, however. You can now create as many directory handlers as you like and you have numerous options for limiting the subscribers included in the search for each handler. You can, for instance, create directory handlers for each department in your company, for each physical location or, if you need to, you can even present lists of subscribers without requiring callers enter anything at all.

There are four pages in the SA for each directory handler: profile, search options, match list options and caller input. They’re shown in the following 4 figures.

[image: image13.wmf]

Figure 7.11

The profile page shown in figure 7.11 looks identical to the directory handler profile pages in older versions of Unity with the exception of the “Play All Names” checkbox option at the bottom. With this option checked, Unity will not ask the user to spell the name of the subscriber they are looking for. Instead all the subscribers associated with that directory handler will be listed out in their entirety. This option is intended to help in areas where letters on the keypad used for spelling names are not the norm (i.e. in Japan). Administrators can create numerous directory handlers that span all the users in a company and then provide a call handler tree that will allow callers to narrow down their search. For instance you could have a directory handler for all subscribers who’s last name begins with “A or B” and one for “C or D or E” etc… covering the entire alphabet (or character set of choice for the language in question). As long as the list of subscribers at the “leafs” of this tree were reasonably small this is one way to work through the problem. Clearly a very large company would have difficulty implementing such plan or callers would have to be very patient and persistent to find the user they were looking for.

Again, the extension here is optional and the owner means nothing at this point, similar to the interview handlers. It does, however, need to be filled in with a valid subscriber or distribution list or it’ll be considered an error. One question I’m asked every now and again is what the recorded voice name on the directory handler is used for. The short answer is it’s currently used for nothing. It’s never played over the phone and since you cannot edit directory handlers over the phone interface the only time you ever see or hear it is on the SA interface itself. You can record one if you want, but it serves no direct purpose at this point.

[image: image14.png]rofile

Narne: Directory Handler
Created: 22/09/2002 11:11:18 AM

Example Administrator - DO NOT DELETE -

OWNEE || THinKPAD

Owner type: | Subscriber <

R v[r e
ecorded voice: | o -

Extension [————————
(optional)
Language: [Inherited =

Play All Names: I~

———T—

Volume

Change

Figure 7.12

The search options page is considerably different in 4.x than in previous versions. This page allows administrators to decide which subscribers are included in the search list when users spell the name of a user they are searching for in the directory. Remember, subscribers here include both “full” subscribers and “internet” subscribers (AMIS, Bridge, VPIM and SMPT subscribers). Here’s how the options break down:

· Local Unity Server Only. All subscribers (both full and internet) that were created on the local Unity server are included. This does not mean their mailboxes need to be stored on the local Unity server, this means they are associated with the local Unity server – an important distinction that trips some folks up. If there are multiple Unity servers on your network, users in the other Unity servers will not be included in this search.

· Location. This allows you to select a delivery location created on the local Unity server or the default primary location all full subscribers are associated with. You cannot select a location object from another Unity server on the network, this is simply a way to limit subscriber searches to subsets of the subscribers on the local Unity box. Specifically it’s a way to limit searches to just full subscribers (select the primary location created by setup) or to a group of internet subscribers (VPIM, AMIS, SMTP or Bridge subscribers). Remember, unlike earlier versions of Unity, all internet subscribers must be associated with a delivery location so this option provides a way to screen out internet subscribers if you don’t want callers find them in the directory.

· Class of Service. This option limits the search to subscribers associated with a class of service on the local Unity server.

· Dialing Domain. This limits searches to all subscribers on all Unity servers in the directory that are associated with the same dialing domain that the local Unity server is in. If the local Unity server is not in a dialing domain this has the same effect as selecting the “Local Unity Server Only” option above. See the networking chapters for more information on dialing domains and how they work.

· Public Distribution List. This was the toughest option to add and by far and away the most powerful. This allows you to select any public distribution list in the directory and limit subscribers searches to that list. The public distribution list can contain non subscribers, of course, since the lists actually live in Exchange 5.5, Active Directory or Domino. Non subscribers in the list are simply ignored.

A couple notes about the public distribution list option that need to be mentioned here. When a member is added or removed from a public distribution list that’s being used as a scope filter here, Unity must traverse through the entire distribution list membership, including all sub distribution lists, and construct a full, flattened list of subscribers in that list which is stored in SQL. There’s simply no way Unity could go out to the directory dynamically and do a lookup of a user by name in a list stored externally in the directory fast enough to be acceptable over the phone interface, so the list must be flattened and stored locally. As such if you make a change to the list and then immediately test it over the phone, the list may not have been updated locally in SQL yet. Unity checks for changes to all objects it cares about, including these distribution lists, every two minutes by default. This is the synch time for the directory monitor which can be adjusted in the registry but should really be left alone. See the Architecture Overview chapter for more details on how the directory monitor itself works.

The distribution lists used for scope restrictions on directory handlers (called “Scope Lists” internally) and distribution lists used as owners and recipients for handlers in Unity (called “System Lists” internally) are represented separately in the local SQL database. In fact if you use the same distribution list as a scope list and as, say, a message recipient for a call handler, that same distribution list will show up twice in the local SQL database: once in the ScopeDList table and once in the DistributionList table. Their respective members are also stored in separate tables (ScopeDListMembers and SystemDlistMembers respectively). Membership information for scope lists is complete which means that all sub lists (and sub sub lists etc…) are walked to get a full accounting of members in the list. System lists, on the other hand, only get the “top level” members of the list, meaning that sub distribution lists are not traversed, only noted as members. This doesn’t have any real impact on administrators but could be of interest to folks pulling information out of the local UnityDB database in SQL. We’ll touch on this a bit further in the Programmatic Administration chapter later.

[image: image15.png]€ Local Unity Server anly

 Location Defeuft- DO NOT DELETE x
€ Class Of Senvice {Default Administrator} 7

€ Dialing domain

& Public Distribution List [Seattle - Engineering Select

Search by:
 First narme, last name

@ Last name, first name

Figure 7.13

The match list options page shown in figure 7.13 hasn’t changed since early versions of Unity 2.x. The “On a unique match” options lets you decide what the directory handler does with the caller when there’s only one match to the name they spelled. By default it will confirm the match with the user and let them decide if they want to transfer to their extension or not. You can check the behavior to simply not ask and send them right to the subscriber’s transfer rules instead.

The “Announce matched names using” option lets you determine how the list of matches is presented to the user. By default it simply lists the subscribers by voice name and gives the user the option of selecting them by position in the list (i.e. “for John Smith, press 1, for Tim Smith, press 2…). You can change this to require the user to enter the extension of the subscriber instead. You may want to do this if you would like callers to remember the subscriber’s extensions next time I suppose but other than that there’s no good reason to force this option.

[image: image16.png]Match List Options

On a unique match:
 Route automatically

@ Request caller input first

Announce matched names using:
© Extension format
& Menu format

¥ Announce extension with each name

Figure 7.14

The Caller Input page shown in figure 7.14 has been the same for some time as well. This is where administrators can decide how long Unity will wait when users don’t respond and how many times to present the list of matching subscribers as well as where to go when exiting the directory handler. One thing to note here, however, is that the curious Unity aficionado poking around in SQL or DOHPropTest will notice that there are actually several exit events defined for a directory handler in the database: Exit, No Input, No Selection and Zero. Currently however only the “Exit” events are used by the conversation and, as noted in the shot above, it defaults to the opening greeting call handler created by setup.

One of the most common problems I see in the field with directory handlers in general is folks getting frustrated that some subscribers are not included in the search when they spell their name. This will be a bigger problem now that we have scope options on the Search Options page, however most of the time there’s a very simple explanation for this. Subscribers must have a recorded voice name AND have the “list in phone directory” option set on their profile page or they are automatically excluded from any searches. The recorded voice name throws a lot of folks off the scent since it’s not immediately obvious why that limitation would be in place. We put that restriction in place since outside callers spelling a user’s name and getting a list of matches back that did not include the voice names of everyone would be at a loss for which user to select. Even if their extensions are included in the list, this still wouldn’t be of help since if they knew the subscribers extension in the first place they would have simply dialed it directly rather than going through the directory handler to find them. Yes, it would be handy if Unity would simply run the user’s name through a text to speech engine and generate the name on the fly for subscribers that haven’t recorded a name, however TTS licensing issues come into play here (not every system ships with TTS enabled) and in general TTS engines are really bad at proper names unless they’re spelled phonetically, which is not usually the case. This may be an option that becomes available in later versions of Unity as we include alternate and improved TTS engines. If you need to find out which subscribers have recorded voice names and which do no, you can use the “Subscriber Information Dump” utility that ships with Unity 3.1(2) and later and is also available on www.CiscoUnityTools.com.

The changes to directory handlers take Unity 4.x one step closer to a proper tenant services capability. The big missing piece now is strict directory segmentation capabilities. Directory segmentation features that allow multiple companies to share a single Unity without bumping into each other’s subscribers and audio text applications over the phone interface and optionally via the administration interfaces is a reasonably tough nut to crack well. It’s on the radar for Unity in the next major development cycle. We’ll discuss some tenant services options and pitfalls in Unity 4.x later in this chapter.

Routing Rules

Even though routing rules are stored in SQL, they are not really a database object like handlers, subscribers and interviewers are. However, they figure very prominently into handling inbound calls and can be critical for getting your auto attendant applications working properly, particularly if you want to route callers to specific audio text trees automatically based on the number they dialed or the like. Every call that comes into Unity goes through the call routing rules no matter what. Even if you never touch or look at the routing rules, they are critical to the proper functioning of the Unity server.

The routing rules are actually pretty straight forward from a high level. Unity gets information about a call coming in from the switch which can include the calling number, the number it forwarded from, the dialed number etc… Unity then starts at the top of the list of routing rules and looks for the first rule that matches the information it got from the switch. If that rule “succeeds” the routing rules are done and the call is now in the hands of the Unity conversation as it passes around in the collection of call handlers, subscribers, interviewer and name lookup handlers in the database. If not, it’ll proceed to the next rule in the list until it finds a rule that succeeds. A rule will ALWAYS succeed here since there is a special rule at the bottom of the table that is hard coded to catch all calls and send them to the opening greeting call handler created by the Unity setup which cannot be deleted and should always be there. You can, of course, add your own rules to this list by going to the SA’s “routing rules” page and adding new rules for forwarded or direct calls into the list. You cannot, however, delete or move that hard coded “send to opening greeting” rule in either list. It is there as a backstop ensuring Unity can always do something with an inbound call.

The key to understanding and using routing rules is knowing what information you get from the switch on an inbound call and realizing that the order in which the rules are processed is crucial to how calls will be handled. If you put a perfectly valid new routing rule in the wrong place in the list, you can break all inbound call handling in a hurry. New rules become “live” on the fly so in general you want to do your tinkering off hours. In the troubleshooting section at the end of this chapter I cover how to restore the default routing rules in the event you hose up your system so bad you can’t get it back easily.

Checking Your Sources

Before you drop the hammer and start making custom routing rules all over the place, first take the time to make sure you know what information is coming into Unity from the phone switch (or switches in the case of a dual integration). I’ve seen many administrators beating their Unity routing rules and call handler configuration right to death’s doorstep in a desperate attempt to make them work the way they want them to only to discover the source of the problem has nothing whatsoever to do with Unity. Their switch configuration needed their attention since it was passing some unexpected information to Unity on the inbound call.

Step one in customizing your routing rules should ALWAYS be to fire up the Call Viewer application and run some test calls in from/to the numbers you want to create routing rules for. You’ll find the Call Viewer in the Switch Integration Tools section of the Tools Depot, a screen shot of it is shown in figure 7.15.

[image: image17.png]Caller Inpu

Tirmeout ifno input, in seconds: [=]
Tirmeout after last input, in seconds: [=]
Tirmes to repeat narne entry prompt: [|_ =]

If caller exits, send to: [Call handler < Select Call Handler

Attempt transfer for Opening Greeting

Figure 7.15

This application was, in fact, designed specifically for use in creating and editing routing rules. The columns shown in figure 7.15 correspond directly to the values you can include in your custom routing rules. The call routing rules pull their information from the exact same place that the call viewer does so there can be no question of the data being manipulated in between what you’re seeing and what the rules are using. There’s even an “always on top’ option under the view menu so you can see what’s coming in from the switch and look at your routing rules data on the SA at the same time. We think of everything. Note that the call viewer only shows incoming call information. Outdials for notification, MWI or TRAP sessions will not show up in the call viewer.

A quick run down on what data shows up in the columns:

· Call #. This column is simply a counter of the number of calls that have come in since you opened the call viewer. When you start Call Viewer the first call to come in will be call #1, the next will be 2 etc… This has nothing to do with the call information from the switch at all, it’s just there to help you with troubleshooting, in particular if you dump it out to a file for later review. Notice that when a call terminates another row is added with the same call number value and an indication of how long the call lasted.

· Time. This is the time the call started or ended depending on which row you’re looking at.

· Origin. This can be internal or external. As noted below, you probably shouldn’t rely on this value coming from the switch since most don’t provide an accurate flag here. If Unity is hooked up to Call Manager, this value will ALWAYS be “internal” no matter what. I’ve had numerous sites ask about this.

· Reason. This can be either direct or one of three forwarding reasons: Busy, RNA (Ring No Answer) or Unconditional. As noted below you can’t make routing rules use the specific types of forwarding reasons.

· Trunk ID. The switch trunk the call came in on, if provided. In figure 7.15 you can see it’s always 0 since the switch Unity was hooked up to when that shot was taken did not provide this information. A value of “0” means Unity knows there is no trunk information provided, however a value of “-1” means Unity cannot tell what the trunk number is or even if there is one. A subtle but important difference that comes up from time to time.

· Port ID. The Unity port that the call came in on. This can be useful if you have a dual switch integration and you want to have different routing rules depending on which switch the call came in on, for instance.

· Dialed Number. The original number the caller dialed when coming into the system. This can be useful for creating multiple audio text applications that callers are sent to based on the phone number they dialed. You could, for instance, have one number published in a Spanish periodical and a different number published in a German periodical and callers using those two different numbers would get different audio text trees in the appropriate language. It should be noted that in some cases this value does not correspond to the original dialed number. If the switch is setup with virtual extensions for mapping calls into the voice mail ports, for instance, this value can be switched around behind the scenes on us. This is, however, what the switch is reporting to us as the dialed number. See the Switch Integration chapter for more details on this type of thing.

· Calling Number. The calling number, if provided. Unity does include the ANI information of external callers in the subject line of the message left if it’s provided by the switch integration.

· Forwarding Station. The number of the station that forwarded to the Unity ports. Note that if a call forwards from one Unity port to the next until a free line is found, the forwarding number reported will be the original forwarding station, not the last redirecting number. The last redirecting number is not exposed anywhere in Unity.

As noted above, as a general rule the origin should not be trusted since very few switches actually send information specifically about the call being internal vs. external and when in doubt Unity defaults to internal. This does not affect if Unity plays the internal greeting on call handlers or subscribers, however. Unity determines if a caller is “internal” for the purposes of playing that greeting (if it’s active) by checking to see if the calling number matches an extension of a subscriber on the local Unity server. In this way a subscriber calling in from home who has their home phone set up as an alternate extension for their subscriber mailbox will still be considered an internal caller when they dial another subscriber’s extension even though they are, from the switch’s perspective, an external caller. Folks often confuse these concepts. Short story, I recommend you always choose “both” for the origin on your custom routing rules or you may run into difficult to debug problems with call routing.

You’ll notice in figure 7.15 there are a couple different types of forwarding shown in the Reason column (busy and unconditional). There are, in fact, three separate types of forwarding codes that we can get from the switch: Busy, Ring no Answer, Forward All. However, the keen observer will also notice that on the forwarded calls routing rules page in the SA you do not have the opportunity to specify these types. In very early versions of Unity we allowed users to specify which types of forwarding conditions a rule would trigger on, however it was so error prone given the varying degrees of integration information across the different phone systems it was causing more problems than it was worth. As such, all rules in the forwarded calls section assume ANY forwarded call is valid. We’ll see more of this in the next section.

Understanding Rule Order

The routing rules are shown in the SA as separate tables: one for direct calls and one for forwarded calls. This is purely a user interface convention. They are stored in a single table in SQL and are evaluated from the top down until a matching rule is found. To see this you can open up the Rule table in the UnityDB database using the Cisco Unity Data Link Explorer (CUDLE) in the tools depot or you can open up the AVRulerEditor found under \commserver\techtools. Figure 7.15 is a screen shot of the top portion of the AvRulerEditor application after the routing rules have been selected:

[image: image18.png]i Call

[_[CIx]

Fle Vew

Call#] Tme | Oigin [Reason [Trurk 1D ForID | Disled Number | Caling Number | Forwarding Station |
3 1B4LR Dulion=52sec

3 1BADAD Intemal FrdBusy) 0 2 am 3001 £

2 1B4DI Dualion=20sec

2 1BADIE Intemal FudUncondtionsl) 0 3w 3001 781

1 164007 Duration=105sec

1 1832 Intemal Direet 0 8w £

Figure 7.16

This shows all the default rules created by the Unity setup. The “type” column on the right dictates which rules show up in the forwarded calls and which rules show up in the direct calls tables in the SA. The “system” type means it shows up in both tables which is why you have a total of 5 rules in the SA but, in reality, there are only 4 actual rules. This is the “backstop” rule we talked about earlier that always ensures there is an active rule that will succeed in all cases no matter what. The Type column just indicates which table the rule will appear in on the SA, it has nothing to do with processing the inbound calls at all.

As a side note here, when you open the RulerEditor application you’ll notice you have the option of viewing either the “routing” or “rejection” rules. The rejection rules are not used in Unity and serve no purpose. The idea was to provide a way to have Unity “deflect” inbound calls based on the information Unity received on it from the switch without answering the call first. Unfortunately many switch integrations don’t send us information about a call until after it’s answered. Further, deflecting a ringing call is not easily done with most switches using the integration options provided to us. As such the feature was dropped, however the RulerEditor was not modified to remove it from its interface.

When a call comes in, Unity starts at the first rule and checks the condition column to see if the call information matches the conditions for this rule. A condition can be any number of items such as the PortId being 1 through 4 or the forwarding number being 1234 or the like. Any of the conditions you can set on the SA when creating or editing a routing rule are included in the condition column. The first three default rules above all have a Reason=xxx as their sole condition. The Reason, you’ll remember from above, is if it’s direct or forwarded. A reason of 1 means it’s a direct call. A reason of 2, 4 or 8 means it’s call forwarded RNA, Busy or Unconditional respectively. All routing rules you create in the direct calls table in the SA will include the “{reason == 1}” condition and all rules created on the forwarded calls table will include the “{reason == 2,4,8}” condition no matter what. The “64” type value you see on the default forwarding rule above is a forwarding type no longer used. New forwarded call rules you create will not have that value on them. Additional conditions you apply such as limits on which ports you’re interested in and/or which forwarding numbers and the like are additional constraints added to the condition column. Notice that the last row has a simple condition of “PortID==*”. This means the rule will fire if the port Id is anything which means it will ALWAYS fire no matter what.

Once a row in the table has a set of conditions that pass based on the call information, the action column is executed. The action column is the name of a conversation and, sometimes, the name of a target object. For instance in the last row the conversation is PHTransfer and the target is the Opening greeting call handler. This means the call is sent to the call transfer rules entry point for the opening greeting call handler. The other rules have just the names of some special conversation that don’t appear anywhere else in Unity other than on the call routing rules:

· ConvUtilsLiveRecord. This rule actually has little use in Unity at this point since all the switches that supported live record are not supported by TAC any longer. Call Manager, however, will be adding live record functionality into their product in the near future so this rule will come back into the light again. The big long reason code on the rule above is simply to ensure that when we see this reason we know for a fact it’s a live record session being initiated and not possibly some other call scenario. This conversation takes the calling number and does a lookup in the database to see if a subscriber with that extension exists. If so, it simply starts recording silently with no prompts playing and when the call terminates the resulting message is left in the inbox of that subscriber. If no subscriber is found with that extension the rule fails and the routing rules continue processing with the next rule in the table.

· AttemptForward. This actually shows up in the database as “AttemptForwardToGreeting”. This conversation takes the forwarding number and does a lookup in the database to see if a local subscriber or call handler with that extension number exists. If so, the call is sent to the greeting rules for that call handler. If not, the rule fails and the routing rules continue processing with the next rule in the table.

· AttemptSignIn. The attempt sign in conversation takes the calling number and does a lookup in the database to see if a local subscriber exists that has an extension that matches. It checks primary and alternate extensions for this operation. If a match is found the caller is sent to the subscriber sign in conversation and the next thing they hear is a request to enter their password if one is set. If no subscriber is found this rule fails and the routing rules proceed to the next rule in the table.

You will not find these conversations as options in the drop down lists in the SA for user input keys, after message actions, after greeting actions or the like. These conversations can only be applied when the call first enters the system via the routing rules since they include database searching options that return a “failed” or “succeeded” return code to it’s caller that needs to be specifically accommodated.

Since the rules are evaluated in order, the order that you have them in the tables is very important. For instance if you created a rule that said all calls that hit ports 1 through 4 should go to a specific call handler and had it at the very top of your direct call rules, then all subscribers calling in to check messages that happened to hit ports 1 through 4 would not get automatically logged in as they should. You would want to make sure to move that rule down below the “attempt sign in” rule to make sure that internal subscribers calling in would be logged in first. External callers will fail the attempt sign in conversation and will proceed to your new rule as they should. Whenever making changes to your routing rules always be sure to test your system to make sure forwarding to greeting and subscriber sign in functions are working as you expect. This is by far and away the most common routing rules problem I run into in the field.

Yes, you’ll notice the forwarding and direct calls are mixed together in the list of rules shown above. Unity only preserves the order amongst the direct call rules and the forwarded call rules. Since a call can never be both forwarded and direct this is a safe assumption. When you reorder your forwarding routing rules in the SA, for instance, and if you go look at the AvRulerEditor you may notice direct call rules interspersed. This is ok so long as the order of the forwarded call rules is preserved. If you’re looking at the Rule table in SQL it’s the “RuleIndex” column that dictates the order in which the rules are evaluated.

As a side note, I strongly advise you not to actually edit rules using the AvRulerEditor. It’s fine to take a look and use it to help you understand what’s going on under the covers but it’s very squirrelly to use on a live system and it’s extremely easy to damage your routing rules, including the ever-important system default rules that are crucial to the proper functioning of your system. When making changes it’s best to go through the SA to do it. If you do damage your routing rules beyond repair, you can easily bring by the system default rules. This is covered in the Troubleshooting and Damage Control section at the end of this chapter.

Extension remapping

After all that haranguing about the call viewer actually showing you what the switch is sending Unity, there is a way to change the calling and forwarding numbers before Unity actually gets them and processes the routing rules. This is through a mechanism called “extension remapping” which has been around in Unity for a while but isn’t often used since the introduction of alternate extension support for subscribers. Occasionally, however, a scenario does come up that warrants their use and they can be quite handy.

Under \Commserver\IntLib\ExtensionMapping you’ll find two directories: Calling and Forwarding. In each of these directories you’ll find a sample.txt file that covers the basics for how to construct a mapping file so I wont cover the details in depth here, you can read them for yourself. The short story is you can create .EXM files in either or both of these directories that instructs Unity to replace a forwarding and/or calling number coming from the switch with another number BEFORE it’s processed by the routing rules.

For instance, say you have a file “test.exm” (the file name does not matter, only the extension is significant) in the Forwarding directory that contains the following rules:

1000, 2000

5???, 62???

If a call forwards into Unity from extension 1000, when Unity processes it, it will use “2000” as the forwarding number since the first line in the remapping file dictates all forwarding extensions matching 1000 be replaced with 2000. Even the information you see in the call viewer will show “2000”. If you want to see the original forwarding number you’ll have to look in the MIU diagnostic logs.

The 5???, 62??? Rules would take any 4 digit number that starts with 5 and make it so it starts with 62 instead. For instance 5432 would be translated to 62432. You can also use * as wildcards if you like. The extension mapping files are flexible enough to allow you to dictate that only calls coming in on certain ports should be manipulated which can be handy in a dual switch integration scenario. You can also have multiple mapping files in each of the “Calling” and “Forwarding” directories that have their own set of port mappings and extension maps. In this way you can provide different extension remapping rules for different sets of ports corresponding to the different switches Unity can be hooked up to.

While the extension remapping files can be extremely powerful, they can also cause you a lot of headaches. If you have multiple, large and complex remapping files for both direct and forwarded calls it can make your system very difficult to troubleshoot when calls aren’t going where you expect them to. As a rule, if you need to use a remapping rule, keep it simple and as straight forward as possible. The need to use a remapping file should be very rare indeed, use them sparingly if at all. In most cases alternate extensions will do what you need here. If you need to, you can check out the very cleverly named “Alternate Extension Adder” tool on www.CiscoUnityTools.com to help you add alternate extensions to large numbers of users based on CSV file input.

A word about Languages, Prompts and Greetings.

Before we move on to covering some of the more common scenarios folks want to handle in the field, a quick word about languages in Unity. This is a commonly misunderstood item in Unity and I get a lot of questions about it.

The short story is Unity is built on a “tag you’re it” model of language assignment. A call is “tagged” with a language when it enters the system and it will remain that language as is passes through various call handlers, subscribers, interviewers and name lookup handlers in the system until it encounters an object that changes it’s language. On all the language options in the SA, save for the language subscribers hear when they call in to check messages, “Inherited” is an option. Inherited means to leave the language of the call alone and is the default option for all newly created objects in the database.

The thing folks get tripped up on is WHAT is played in the language of the call. There are four types of WAV files that the Unity phone conversation plays to callers: Messages, Prompts, Greetings and Voice Names. Greetings are custom recorded greetings for subscribers and call handlers that an administrator or subscriber records. Voice names are again administrator or subscriber recorded files that get played in various parts of the conversation. Messages are, of course, recorded by callers or other subscribers. Prompts are the collection of around 2,000 individually recorded system WAV files per language that Unity uses to construct the conversation that the callers hear.

Only PROMPTS are played in the language specified. Each call handler or subscriber has only one set of greetings and a single voice name and those greetings will always play no matter what language is selected for the call. I know this may seem obvious but you’d be surprised how many times folks have emailed me complaining that they selected a different language for their opening greeting and it’s still saying “Hello, this is the Unity messaging system…” greeting in US English. Even though that greeting is recorded in the same voice that the prompts are, it’s still a custom greeting and it doesn’t change when you change languages on the call handler. You have to record your own greetings in the language you want callers to hear for any call handler in the system, including the default handlers created by the Unity setup.

If you want to offer a multi lingual audio text application for callers you have to create duplicate sets of call handlers that have greetings recorded in the languages you want. You can’t support more than one language with the same set of call handlers. We’ll cover this a little more in the scenarios section below, but since it comes up often enough I wanted to mention it separately here.

One last note before leaving this subject since I get this question quite a bit. Localizing the prompts into other languages is not a simple matter of recording each individual prompt WAV file in the desired language. Different languages say things in different orders and patterns and if you just strung the set of WAV files together in the same order you do in, say, U.S. English it will sound decidedly bad. Unity employs a series of files called “phrase servers” that act as the agent to assemble the collection of individual prompt files into a syntactically correct phrase in the language desired. Each language has not only a set of prompt files recorded in the appropriate language but a full suite of phrase servers for that language as well. So no, you can’t just record you own language if Unity doesn’t currently offer the language you or your customer is looking to have. This requires code work and a lot of professional voice time and testing before a new language can be added to the list Unity supports. It seems like it would be easy, but it’s not I assure you.

A Word about the Default Configuration of Unity

I just need to quickly mention the default configuration of Unity “out of the box” here before moving on to the example scenarios. I’ve seen probably hundreds of systems where folks installed Unity without realizing the default configuration was routing callers to the example interview handler at night and leaving those messages for the Example Administrator. Months later they discover hundreds of messages sitting in the Example Administrator’s mailbox and completely freak out about it. Don’t do that.

Out of the box Unity has (among others) the following default objects it adds to the database and, in the case of subscribers and distribution lists, to your directory:

· Opening Greeting Call Handler. By default this is setup to play a generic greeting between 8 and 5pm and send calls to the Operator Call Handler if the user enters no digits during the greeting. At night it plays a generic “after hours” greeting and then sends calls to the operator mailbox which forwards them to the Example Interviewer at night. This is the default destination for all incoming calls that are not forwarded from a subscribers extension or are not direct incoming calls from subscriber extensions. It is also the default destination when subscribers exit their conversation or when users enter an invalid digit sequence during a call handler/subscriber greeting. It is ALSO the default destination when someone hits “#” during the subscriber sign in conversation. It’s marked undeletable so you can’t remove it in the SA but if you try hard enough (i.e. access SQL directly) you can delete it and cause yourself all kinds of grief. Do NOT do this. If you don’t want to use the Opening Greeting call handler, fine – make a routing rule that sends callers to different call handler(s) for inbound calls but leave this guy there. Trust me, you’ll save yourself all kinds of trouble.

· Operator Call Handler. Also an undeletable call handler, it’s mapped to extension “0” which is unusual since you are not allowed to enter extensions under 3 digits in length yourself when you create new handlers in the system. By default every single call handler in the system will have it’s “0” key mapped to this call handler. There are no hard coded references to this object but it’s still a reasonably bad idea to delete it unless you have a VERY good reason to do so. You can change the extension on it and everything else so there’s no compelling reason to want to remove it entirely. Also be aware that the after hours behavior on the operator call handler is setup by default to send callers to the example interviewer which is configured to take a message left for the Example Administrator account. You will very likely want to change this on new installs.

· Say Goodbye Call Handler. The last of the undeletable call handlers created, this is one you definitely want to leave alone. There are many spots in the SA where you can select “say goodbye” as a call destination and that’s a hard coded reference to this call handler. If you delete this you’ll break everything. Don’t do that. You may not want to use this handy option in the SA, however, if you’re trying to do multiple tenant type scenarios. This is covered in the “Tenant Services Scenarios” section later in this chapter.

· Example Interviewer. While this guy is marked undeletable it can be removed relatively easily if you feel the need to do so, but it’s not doing any harm. By default the operator call handler sends calls to this guy after hours and it leaves it’s messages in the Example Administrator’s account. If you decide to remove it, make sure to change the behavior of the operator call handler accordingly.

· Example Subscriber. This is just what the name implies, an example subscriber account, nothing more. There are no references to this guy from other objects in the database and it can, and probably should, be deleted out of your system since it’s parking on a subscriber license in your system and providing no direct value. The reason for this account even being included in the default configuration database is unclear to me.

· Example Administrator. Not quite as straight forward as Example subscriber – it’s marked undeletable for a reason but you CAN remove it if you follow all the appropriate steps. This guy is setup as the owner and recipient for all new handlers created in the system and is also the only member of the Unaddressed Messages public distribution list among other things. If you just delete this guy out from under us Unity will get very unhappy on you and you stand a chance of losing messages from outside callers destined for subscribers with full mailboxes and the like. It DOES chew up a license and also can present a security hole unless you change its default password. There is a tech tip that details the steps necessary for removing this guy and I wont cover the gory details here. You can find the tech tip here: http://www.cisco.com/warp/customer/788/avvid/remove_example_admin.html
· All Subscribers public distribution list. This is the default distribution list added to the two default subscriber templates created by setup. Any addition templates you create will, by default, also reference this guy. It’s generally a good idea to leave it as is since the need to have a mechanism to leave all subscribers a message is really common and this is the easiest way to do that. If you do decide to remove it, make sure to update your subscriber templates to no longer reference it.

· Unaddressed Messages public distribution list. This distribution list is critical. Do NOT remove it. Period. It’s referenced in the registry as the place where all voice mail messages Unity cannot deliver from outside callers (i.e. not subscriber to subscriber messages) get sent. If this list is gone or it contains no members you will lose these messages which is the cardinal sin for any voice mail system on the planet. I’ve seen some sites just arbitrarily delete this guy from the directory and not find out for months that they’ve seriously damaged their system even though event log errors were getting logged left right and center. This is a very bad thing, please don’t do that.

· System Event Messages public distribution list. This is the default list used by the Error Notification Utility (also called General Audio Error Notification or GAEN). You can delete it if you’re not using it in the ENU utility.

Calling into systems in the field, I see a few often repeated common problems related to the default objects noted above.

· The site has removed a default object in the database. For instance folks that have managed to delete the “say goodbye” call handler directly in SQL or DOHPropTest. The “hard coded references” to these objects noted above are done so by the alias of the handler. If you “accidentally” (I’m giving folks the benefit of the doubt here) delete one of these guys and want to put them back, make sure you use the same alias as the default script does when creating a new one to replace it – you may be better off using the “FixDefaultObjects.sql” script to have Unity recreate all the default objects again. We’ll cover the use of this script in the troubleshooting section at the end of this chapter.

· The installer has not changed the default behavior of the opening greeting and operator call handlers. You’d be amazed at how many sites don’t even realize callers are being sent to the example interview handler after hours and that messages are being deposited in the Example Administrator’s email account. This is by far and away the most common problem I run into in the field. Make sure you either have someone monitoring the Example Admin’s mailbox or, better, have a real admin type account setup to be the recipient for those objects.

· The installer did not make sure a real, “live” administrator is a member of the unaddressed distribution list. The unaddressed messages distribution list is another one of those “we didn’t know” moments I run into in the field. This is a VERY important concept and you need to remember to have an administrator-type on the local site added to this DL to handle messages that get sent to it.

· A customer IT type person removed an object, such as the Example Administrator account or the unaddressed messages DL, in the directory, not realizing it would cause problems. Even though they’re marked undeletable in Unity nothing stops a user from waxing them in the directory and yanking them out from under us. As noted above, it’s fine to remove the Example Admin account as long as you carefully follow the steps necessary to do it right. Removing the unaddressed messages DL is never a good idea.

Scenario Examples

OK, now that we’ve covered the mechanics of how Unity handles calls, lets run through some common scenarios folks run into in the field.

Audio Text Manager

First, a quick word about the Audio Text Manager application which started shipping with Unity in 3.1(4). This is a TAC supported tool designed to help you quickly and easily design and support complex audio text applications. This chapter is targeted at the concepts involved in audio text applications and not the mechanics of creating and associating objects in question. While I’ll touch on it’s use and show a few screen shots, I’m not going to spend significant time here discussing the details of the ATM tool itself since you can view the training videos and read the extensive help for this application on line at http://www.CiscoUnityTools.com. If you’re going to be creating audio text applications of any size or complexity, I highly recommend you take the time to familiarize yourself with this tool. While it’s not necessary that you use it for handling any of these scenarios, you will find you can move through them considerably quicker and with fewer mistakes than doing it via the standard web based SA interface.

Basic Audio Text Application

Lets start with the most basic example: the classic handler “tree” giving callers options to get at different types of information through call handlers. In this example we’ll create a simple application that allows users to get production information, obtain technical support or search for a subscriber by name in one of two cities.

First, create the entry point into the audio text application. I’m using a call handler named “Tiny Audio Text application” for this example. The first decision you need to make is how callers are going to access this call handler to get to your little audio text application in the first place. You have a few basic options to choose from:

· Use a DID number dedicated to this application. You’d create a direct call routing rule that triggers on this dialed number and routes the call directly to the call handler acting as the “root” node of your audio text tree. For applications offered in multiple languages or for a multi tenant environment this method is ideal as we’ll discuss later. While this is certainly a slick mechanism, it may be a little heavy for the typical company just doing some light audio text work.

· Use a virtual extension that forwards into Unity. This is a little more approachable then a dedicated DID line for most folks. If you assign the “root” call handler (in this case the “Tiny Audio Text application” call handler) an extension and then have calls forwarded from that same extension into Unity, they will automatically be routed to the handler for you. You can also, of course, create a custom routing rule to do the same thing and avoid assigning the handler an ID.

· Setup a link to the “root” handler from the opening greeting call handler and allow callers to choose to enter the audio text application manually. For your typical light weight applications this is fine.

· Similar to the one key link off the opening greeting, you can assign the “root” handler an extension and have users dial it from the opening greeting (or any other greeting for that matter). This is not a typical method you’d want outside callers using, however for power users that don’t want to navigate through a layer of links this method can be handy since it allows them to get right where they want to go in a hurry. Be sensitive to users that may need to use these applications repeatedly and keep such shortcuts for them in mind.

Once you’ve decided how callers are actually going to get to the audio text application, you can go ahead and put it together. In this case we’re going to keep it simple and create a total of 3 call handlers and two name lookup handlers:

Tiny Audio Text Application call handler. This is our root node, or entry point, into the audio text application. I have it’s alternate transfer rule enabled and set to not transfer. I always use the alternate rules for both transfers and greetings unless I have a good reason not to. In this case the handler will never be ringing any phone so it makes sense to do it this way. I also use the alternate greeting since in this case I want callers to always hear the same greeting no matter what time of day it is. The greeting gives the callers the option of selecting “1” for product information, “2” for technical support, “4” to find an employee in Seattle, “5” to find an employee in Chicago or “0” for the operator.

It’s always a good idea to leave the “0” linked to the operator. You can choose area operators depending on which handler you’re in and the like but you should always give callers the option of bailing out and talking to a human. The ISO standard conversation specification for voice mail, in fact, lists this as a requirement for all parts of a conversation. If you, like me, pattern your life after ISO proclamations you’ll want to follow their lead here.

Since this handler is a routing handler only and wont be used for taking messages, I expect the user to input one of the options here. As such, I have the greeting set up to repeat twice with a two second pause (if you don’t remember how to do this, revisit the greetings page info earlier). This means the greeting will play a total of three times which gives the caller more than enough time to make one of these 5 choices. I set the after greeting action to go to the operator call handler since if the user didn’t input an option they’re clearly having trouble or perhaps are dialing from a rotary phone (do they still have those?) and are unable to input anything.

With this setup, calls flow through this handler in a very predicable fashion. They will always hit the alternate greeting which will play up to 3 times if the user doesn’t input anything and will then send them to the operator. If I’m concerned about users being able to dial extensions, I can “lock the handler down” here as well. This is covered in another example a little later. Now we need to create the Product Information and Technical Support handlers

Product Information call handler. This handler can play a greeting that simply lists all the products available with short descriptions or, if you want to get fancy, it can have links off of it to additional call handlers for each product that has longer descriptions or the like. The setup for this handler is basically the same as the root handler above, however the after greeting action should be set to return to the “Tiny Audio Text application” call handler. In general it’s a good idea for any audio text application to have a no input action that returns one level up in the tree. The top of the tree should go to the operator or to the ‘say goodbye’ call handler for exiting purposes.

Keep in mind ALL your exit routes from a call handler here. Just a refresher, there are six ways a caller can jump off a handler:

1. A transfer rule can ring a phone and release the call.

2. Dialing an extension during the greeting. If you don’t want to allow this you can “lock the handler down” which is covered in a later example.

3. Dialing a user input key that’s mapped to an action to send them somewhere.

4. The after greeting action can be configured to send them somewhere.

5. The after message action can be configured to send them somewhere.

6. The Error greeting can kick in if the user enters an invalid option and send them somewhere.

We’ve covered items 1 through 5 above since the transfer rule is not ringing a phone, the handler is not taking a message and the after greeting action is configured to go to the “Tiny Audio Text application”. It’s item 6 that bites folks since, by default, this greeting is not visible in the SA and folks don’t know it’s there. We cover how to deal with this in the “Locking Down Extensions” example a little later, just remember this is there and something you need to concern yourself with when creating any type of application.

Technical Support call handler. You can configure this call handler to send calls to a call queue during the day or go to an interview handler after hours to collect the callers details so you can return their call in the morning. To do this you’d configure it’s standard transfer rule to be active and do a release transfer to the call queue (it’s a good idea to have calls stacking up handled by the switch and not chewing up ports on your Unity server if you can help it). Setup the off hours transfer rule to go right to the greeting. Since only calls after hours will reach the greetings, you can again use the alternate greeting and avoid confusion here. In this case you’d want to use the ‘blank’ greeting option and have an after greeting action configured to go to an interview handler that’s setup the way you want it. The training videos available for the Audio Text Manager noted above cover the steps of setting up just this type of application if you need more details.

All Seattle Employees name lookup handler. This name lookup handler would be associated with a public distribution list that contained all the employees at the Seattle office. You could, of course, also use a location object if there are multiple Unity servers involved and you’re using networking or a Class Of Service object if you’ve setup your system that way. Select the name entry order (first or last name first) and the list presentation style and you’re good to go. Again, you’ll want to decide where callers who don’t successfully find a name in the directory go when exiting this name lookup handler. If this handler is only used in this audio text application it’s good style to return them to the root handler (in this case the “Tiny Audio Text application” call handler).

All Chicago Employees name lookup handler. Same deal as the Seattle employees but, of course, with a different distribution list, location or COS selected to get only Chicago employees.

Once you’ve created your objects you need to go back to the root handler and establish the links to the user input keys. To give you a graphical sense of how these objects are strung together, here’s a shot of this simple application’s root handler shown in the tree view of the Audio Text Manager tool:

[image: image19.png]=%, Tiny Audio Text Application
'8, 0: Operator - Ext.0 - (Ring Phone]
8, 1: Product Information - Ext(empy) - (Gresting)

upport - Ext[emply) - [ing

3 lgnore Key

 #lgnore Key

£ 5 Al Seatte Employess - Ext:
B8 6 4l Chicago Employees -Ext
 T:lgnore Key

8 lgnore Key

% lgnore Key

' Floute to Subsciber Sign In
' #: Skip Gresting

Figure 7.17

It makes it easier to see how the calls flow through the system using this type of view. I should also note that if you created this application in the ATM you could simply right click on the 1, 2, 4 and 5 keys there and create the call handler or name lookup handler in question AND make the link active in one shot. You can see how pounding through large and complex audio text application would go much quicker this way than through the SA.

You can keep drilling down and creating new levels under the Product Information and/or Technical Support handlers as deep as you’d like. Just remember that callers will be navigating this over the phone and probably wouldn’t appreciate slogging around a 20 level deep audio text application. Just because you can doesn’t mean you should.

Yes, this is a pretty simple example but it covers the basic framework of what a typical audio text application is. I have a few “rules of the road” for creating audio text applications in Unity that you should keep in mind regardless of the scale or type of application your constructing:

· Watch your exit points. Every call handler and subscriber has six ways callers can jump off them, make sure you’ve accounted for all of them to avoid folks ending up somewhere unexpected. The Error greeting is the most common oversight I see here – see the “Locking Down Handlers and Subscribers” example later for more on this.

· Assign owners and recipients appropriately. Even if a handler is not going to take a message, all handlers need to have a valid owner and recipient at all times. If you assign a subscriber or a distribution list to server this roll and then later remove it, you’ll have to go back and clean up all those broken links. Also remember than owners of a call handler are allowed to record greetings for it over the phone in Unity 4.0(1) and later. Another thing to consider about owners is they are handy mechanisms for selecting call handlers using the Bulk Edit utility if you want to make changes across an entire audio text application but not for all call handlers in the database. Since the Bulk Edit utility lets you select call handlers based on switch association, extension range, by their owner or their recipient this is something to keep in mind. If you don’t assign extensions to your handlers (which in general you shouldn’t) and all handlers in your system are owned by the same user then selecting specific groups of call handlers for bulk edit purposes is going to be difficult at best.

· Make sure your “no input” paths are set appropriately. Don’t run a user down 10 levels deep into an audio text application and then dump them back up to the root node if they screw up once or don’t enter anything in the time allotted. It’s always best to jump them up one level at a time unless you have a good reason not to (i.e. your switch does not provide supervised disconnect and you want to terminate “dead” calls as quickly as possible). It’s also good style to offer an explicit menu option to jump back up a level (i.e. “press 9 to return to the previous menu”).

· Always give callers the “0 out” option. I know the purpose of many audio text applications is to prevent callers from reaching live people as much as possible but trapping callers in audio text trees they can’t get out of is just evil. People have a bad image of voice mail in general precisely because of such poorly designed applications.

· Watch your tree depth. A good test to perform after you get your application built is to make yourself call in and reach each ‘leaf node’ in your application, watching how much time it takes. Don’t cheat and dial ahead, listen to all the options first and then select it since this is what callers do. If it’s taking you 10 minutes to get to what you want you can ‘flatten’ your application or perhaps break it up into multiple applications that are more specific.

· Always use alternate greetings and transfer rules unless you have a good reason to do otherwise. I can’t tell you how many times I’ve had folks report “bugs” in Unity to me that turned out to be the wrong greeting or transfer rule triggering based on the time of day or the way in which the call reached the handler. There are times to use schedules, of course, but not unless you need to.

· Make sure you explicitly set the “send to greeting” vs. “attempt transfer” settings when sending a call to another handler or subscriber via a user input key or an after greeting/after message action. This is by far and away the most commonly misconfigured setting I’ve seen in the field. You can get a quick view of all the “ring phone for” and “send to greeting for” settings for all your user input, after greeting and after message actions is to use the “Export tree information to file” option in the Audio Text Manager application’s “file” menu. This will show “(greeting)” or “(ring phone)” after each action in the tree to give you a quick way to find possible problems here.

· Give your callers a chance to input something. Remember, callers don’t take action on the first menu option they hear that’s close to what they want. Folks almost always listen to all the options the first time they hear a greeting and will then make a decision. If your call handler is expecting input, make sure to repeat it at least once with a small delay in between.

· Remember your repeat users. It’s easy to design an audio text application with first time users in mind. However make sure you don’t forget folks that may have to navigate this application often and give them the option of jumping right to a specific handler in the application by direct ID and avoid situations where callers are forced to listen to an entire greeting without accepting input unless it’s absolutely necessary.

Transferring To External Numbers

This question comes up often for some reason or another. Yes, Unity can ring both internal phones off the switch(es) it’s hooked to or it can dial an external number if you so choose. In both cases there needs to be a call handler associated with each and every number you want users to be able to contact. There is no “free dial” capability in Unity at this point, although it’s on the radar for a future version of Unity since the request comes up now and again.

For instance if you wanted callers trying to reach a particular subscriber to be able to optionally ring their home phone number, this can be easily done. First, create a call handler called, say, “Dial Jim At Home” or use some appropriately scalable naming convention that works for you. Set its alternate transfer rule to be active and set the transfer string to be Jim’s home phone number preceded by the appropriate trunk access code. For instance “9,5551212”. It’s up to you to add any long distance or area code or trunk access codes necessary for Unity to dial out on the switch(es) it’s connected to. Unity will not automatically prepend digits for you on dialout, it will dial exactly what’s in the transfer string: nothing more, nothing less. Make sure you keep this in mind, particularly for dual switch integrations which may have different trunk access codes depending on which switch you configured the call handler to be associated with. Once you’ve got the call handler configured properly, set a user input key on Jim’s subscriber account to “attempt transfer for” the new call handler you just created. Finally, Jim can record his greeting that includes “… to reach me at home, press 3 now…” and callers will be transferred to his home phone.

There’s a couple of things to think about with such scenarios:

· What transfer type should you use for the call handler? Whenever you can I always recommend using release transfers to any external number, particularly cell phones. Call progress to external numbers is tricky business and doing supervised transfer reliably is going to be a bit of a roll of the dice.

· If Jim doesn’t want to be getting calls at 3am, you’ll want to configure the call handler to be associated with an appropriate schedule and use the standard and closed transfer rules where the closed transfer rule just falls through to a greeting for the handler which could say, for instance, “Jim is not available now” and has an after greeting action of “send to greeting for” Jim’s subscriber account. The caller can keep trying but it’ll just loop around to his subscriber greeting again every time. If this isn’t a consideration, use the alternate transfer rule so you don’t have to concern yourself with schedules.

· Remember that restriction tables limiting which numbers can be dialed are only enforced at the time the number is edited, not when it’s dialed. Since an administrator must do this via the SA (Jim cannot do this over the phone or via the PCA) this does not come into play for this scenario since administrators would typically be associated with restriction tables that are open.

If you need to create a lot of call handlers because you have many internal extensions you want callers to access that are not subscribers such as conference rooms and lobby phones, there’s a tool to help you with this. The “Bulk Handler Create” tool can create handlers by ranges of extensions or importing from CSV files to make short work of such a request. You can find this tool at www.CiscoUnityTools.com web site.

One last thing to note here. Some PBXes out there will have ports that are defined for voice mail restricted from getting an outside line under any circumstances to avoid folks ripping the company off for long distance charges. The transfer attempt simply fails outright which can cause some weird situations when using release transfers (i.e. callers get “turkey tone” in their ear which is not pleasant). Make sure you take this into consideration when setting up handlers to do external dials.

Locking Down Handlers and Subscribers

One of the issues that audio text designers must take into account is how restrictive they want to be with callers navigating around their system. For some sites it may be perfectly acceptable to let users jump around between audio text trees or try subscriber extensions directly or the like. However, many times this is undesirable. For instance you probably don’t want headhunters randomly dialing your engineers looking to make them a better offer (if this is a big problem you should consider paying your hard working engineers more) or your 800 lines provided for specific audio text applications being abused. If your application falls into the later category then you’ll want to pay attention to all the exit points from a call handler and fully understand the use of “ignore” and “locked” flags on user input keys.

As noted in the first basic example there are six exit points off a call handler or subscriber. The transfer rules, user input keys, after greeting and after message destinations are pretty straight forward stuff and are easily managed using either the web based SA or Audio Text Manager interfaces. Preventing users from dialing extensions directly and managing the error greeting destinations are places where folks typically have difficulty.

Error Greetings

Easily the most misunderstood and overlooked item by Unity administrators. The first problem is by default this greeting doesn’t even show up in the SA interface at all so folks don’t even know it’s there. And if they do, folks often don’t understand what it does, exactly.

Step one is to expose it in the SA. This can be done using the Advanced Settings tool found in the “Administration Tools” section of the Tools Depot. The option you want is “Expose the error greeting for subscribers on the SA” – just set it’s value to “1” and the “Error” greeting option will appear in the greetings drop down list for all subscribers and call handlers in the SA. Frankly I think this should be on by default but in early versions of Unity we got so many calls from folks wanting to know what this error in the SA was about the decision was made to hide it in the interface since at that time the need to customize the greeting’s behavior was very limited. This is probably one of those decisions that needs to be revisited now that the product’s matured some and the smart, good looking, savvy folks who are out there selling and installing it are ready to handle some additional complexity.

The easiest way to handle the error greetings for handlers and subscribers that are already created in your system is to simply change the default behavior for the error greeting across the entire system using the Bulk Edit utility. By default the error greeting will play a system generated prompt that says “I’m sorry, I did not hear that entry” and then will send the caller to the opening greeting call handler created the Unity setup. This can be maddening for folks creating large audio text applications that may be many levels deep since dumping people out the opening greeting when they enter something invalid is really harsh on callers. This can also be a problem for folks trying to created limited tenant services scenarios since there’s one and only one opening greeting and having all callers that fat finger an option sent here is less than ideal. You can, instead, set the behavior to loop the caller back to the same handler or subscriber the caller is currently in. So they’ll hear the same system generated prompt saying we didn’t hear their input and then the greeting for that handler will be played again so they have another chance at it. The following screen shot shows the “error” greeting tab found on both subscribers and call handlers in the Bulk Edit utility:

[image: image3.png]Sondad | Closed | Buy | Alemele | temal | Ewor

Enabled: [<Dorit Change> [~

Allow UserInput: [Dor' Change> 7!

Reprompts
Rieplay Greeting [Times [blark leaves unchanged)
Secands between replays: [(bl leaves unchanged)

Afer Gresting Action
<Derit Change>
Take Actor:

-
©

€ 6o ToDisctoy I

-

-

-

o To Call Hander Find__ | Dontt toring phane.
6o To Subsciber Find | Dontt toring phane.
6o To lnterview Find

Figure 7.18

The “Loop Back to Self” option for the action in the “After Greeting Action” section was specifically added to accommodate this scenario. You’ll want to do this for all subscribers and then again for all call handlers in Bulk Edit to make sure you get everything.

Unfortunately you cannot change the subscriber templates such that the behavior will be “loop back to self” since that’s not an option in the SA. When a subscriber or call handler is created off a template all the exit destinations are just copied in from the template onto the new object, there is no logic for going in and setting the destination to be the new object just created. This would be a very handy feature as far as I’m concerned but it’s not there now so you’ll have to make sure to deal with this.

Another problem here is that call handlers don’t have their own templates like subscribers do. Unless you manually select a call handler to copy from, the default behavior is to use the primary call handler settings off the default subscriber template when creating a new call handler. This is very annoying since you can’t create a separate call handler template for each audio text application that’s configured with appropriate exit destinations, owners and recipients which would be ideal. As near as you can get to this is to select the “base on existing call handler” radio button and choose a call handler to act as a template when you create new call handlers in the SA. Unfortunately it doesn’t remember your choice and you have to select it manually each time. The Audio Text Manager, on the other hand, will remember your last template selection here so if you’re creating a bunch of handlers for an application in one sitting you can create the first handler and configure it as you want and then use it as your template for the rest of the handlers in that application. Again, however, there is no “loop back to self” option for the template here. All destinations, including the error greeting destination, will be copied over exactly as is. So if the call handler you’re using as a template is set to point back to itself as the error greetings “after greeting action”, other handlers created using that handler for its default settings will point to the template handler, not back to themselves. Be sure to keep this in mind.

Restricting Dial Options

Depending on how restrictive you want to be, there are a few ways you can prevent users from dialing extensions directly while a greeting is playing.

· You can disallow all input for a particular greeting in a call handler. This is done by unchecking the “Allow User Input” box on the greeting page for the handler and greeting you want to do this for. This will force Unity to completely ignore all digits entered while that greeting is playing and the greeting will not be interrupted as would normally be the case when a touch tone was entered. This option should only be used in extreme circumstances where you have good reason to force the user to hear the entire greeting before moving on, for instance if some important change has taken place in the application recently and you want to bring the caller’s attention to it before they go tearing off. This option should be used VERY sparingly and on greetings that are reasonably short. Expecting users to sit through a couple minutes of mandatory listening material is both evil and highly optimistic. Expect to see a lot of “hang up” termination reasons in your call handler traffic report if you try that.

· You can not allow users to dial any extensions during any greeting for a particular call handler or all handlers in your audio text application. This is done by unchecking the “Allow callers to dial an extension during greeting” option on the Caller Input page for the call handler or subscriber in question. This option still allows for user input of one key options such as dialing 0 to get an operator or other actions you may decide on, however multiple digit input will not be allowed at all so callers will have no opportunity to dial the extension of a subscriber or call handler in the database. It should be noted that setting this option on the caller input page will affect callers hitting all greetings – this is not a per greeting option. What’s really happening with this option is all the keys are marked for “locked” so whatever action they are mapped to, including ignore, is taken immediately when the caller enters it. Remember that in the case of keys mapped to “ignore” and “locked” the greeting does not interrupt and the key is thrown away.

· You can get a little more fancy and lock specific keys down such that users cannot dial extensions that start with those numbers. For instance if you have all your employees on phones with extensions that start with 4 or 5 then you can lock all 4 and 5 user input keys for all call handlers in your audio text application which would prevent callers from dialing extensions that start with 4 or 5. Other extensions that could be mapped to other call handlers or the like would still be reachable.

Again, if you have a large number of handlers or subscribers created and you want to selectively change the one key behavior, including which keys are locked or not, you can use Bulk Edit to do this quickly.

Although this was discussed earlier in the chapter it should be mentioned again simply because most folks don’t understand the distinction here. A key mapped to “ignore” behaves very differently from a key mapped to “ignore” AND set to “locked”. For instance if you have key “7” set to ignore but not locked, a caller can enter “7114” during the greeting. If there’s a handler or subscriber in the database that has an extension 7114 then the caller will be sent there. If there is no extension found then the error greeting for that handler is acted on instead. The same thing happens if the user just hits “7” and nothing else – the greeting will stop and Unity will wait the number of milliseconds configured for the inter digit delay (1500 milliseconds by default) and will then send the caller to the error greeting. On the other hand if the 7 key is marked “ignore” AND “locked” if the user hit’s 7 the greeting will not stop and the key is simply thrown away. It should be noted that if the user hit “7114” as above here and the keys 1 and 4 are not also set to ignore and locked that Unity will interrupt the greeting and attempt to find “114” in the directory. This is another reason to make sure your error greeting is setup for something more intelligent than dumping the caller back to the opening greeting.

With a properly laid out numbering plan on your phone system you can nicely protect your subscribers from outside callers without being overly restrictive about letting them dial call handlers that have Ids directly for power users that want to jump to a particular spot in your application. It’s a little more work to do the individual “locked” keys but in general this is what I recommend to folks that ask what to do in such cases. If your numbering plan is all over the boards then you may consider simply not allowing users to dial extensions across the boards and locking them into user input keys that you’ve mapped for the audio text application itself only. Just remember that for power users that are return callers it can be extremely annoying to have to navigate through a series of handlers to get to where they want to go as opposed to being given the option of a direct dial “jump” option.

It should be noted that the “lock” and “ignore” combination had a bug in versions of Unity 3.1(5) and earlier that would cause problems with the “selective locking” option here. The key should only be thrown away if it’s the first digit entered that would have interrupted the greeting. Once the greeting has been interrupted and Unity is accepting digits for an extension lookup, all keys should be accepted regardless of what their settings in the user input page are. For instance if the “7” key is locked and the “1” key is not, if the user enters “1774” this extension should be allowed. In previous versions of Unity the “7”s were being thrown out and Unity would attempt to find “14” in the database which, of course, would fail to find a match. For administrators building applications on Unity 4.0(1) and later this wont be a problem, however if you find yourself working on an older system this is something to keep in mind.

Changing greetings for call handlers over the phone

One of the new features in Unity 4.0(1) is the ability (finally) to edit greetings for call handlers over the phone interface. In earlier versions of Unity users were forced to press a subscriber object into service as an opening greeting, for instance, if they wanted to be able to change the greeting for it over the phone in the event of a snow day or the like. This chewed up a subscriber license and was generally pretty annoying.

The way this feature was implemented you have to map a user input key, after message or after greeting action to go to the “Greetings Administration” conversation in the SA or the ATM so you can get there. This option is not part of the subscriber conversation itself, it’s a stand alone “routable” conversation (remember from earlier in this chapter that routable conversations are those that appear as options in the after message, after greeting and user input pages). Once a caller is sent to the greetings administration conversation they must “sign in” by providing their extension and password (if set) to be allowed in. Once you’re in the conversation you can select call handlers that you are listed as the owner for one after another and edit their greetings if you desire. It is not necessary, for instance, to burn a one key link on every call handler you want to edit that maps to the greetings administration conversation.

There are a couple of important things to keep in mind when you want to use the greetings administration conversation for editing greetings on call handlers over the phone:

· Be careful where you configure your entry point into the greetings administration conversation. It’s not a good idea to stick this as a one key option off the opening greeting, for instance, since callers accidentally being sent here will be very confused. A much better option is to hide this in a non connected call handler specifically setup for the purpose of letting callers who should be editing greetings like this gain access to the conversation. For instance setup a call handler that has no connections to it with a long 10 digit (you can go up to 30 but that’s pretty brutal) extension that callers would not be likely to stumble on. This call handler’s alternate greeting could be enabled, the greeting would be blank and the after greeting action would be set to go to “greetings administrator”. This way callers needing to change greetings could just call in, dial the 10 digit number, sign in and they’re off to the races.

· The call handlers that have greetings you want to edit over the phone must have an extension assigned to them. The only way you can select call handlers in the greetings administration conversation currently is by ID which is a little unfortunate since assigning Ids to call handlers is generally to be avoided unless it’s necessary. In this case it’s necessary for the handlers you want to edit greetings for over the phone. In future versions of Unity you will be allowed to find call handlers by spelling their names instead or by getting a list presented of all the handlers the logged in caller owns.

· The selection of greetings offered in the greetings administration conversation is different than those you’ll find in the standard subscriber conversation when you go to edit your own greetings. Specifically the subscriber conversation allows you access to only the standard, off hours and alternate greetings. The greetings administration conversation, however, allows you to get at the alternate, standard, closed, internal and busy greetings. However you cannot specifically enable or disable the internal and busy greetings, you can only record greetings for them. Further, the conversation will not inform you if the greeting is currently enabled or disabled which can be a real problem. The expectation is you’re changing a greeting that’s currently in use on the call handler which may be a bad assumption. As such if you plan to use the busy or internal greetings on a call handler, don’t expect to be able to enable or disable them over the phone, you still have to do this via the SA or the ATM interfaces.

But even with those limitations in the current implementation, it’s considerably better than having to use subscribers as a vehicle for providing an interface over the phone for changing greetings in an emergency situation.

Multiple Language Applications

As we discussed earlier in this chapter, Unity handles multiple language configurations in a fairly simple “tag you’re it” model. When a call touches a handler or subscriber that’s marked for a specific language, the call is considered to be that language until another handler or subscriber is touched that says otherwise. By default objects are configured for “inherited” which means the language the caller is already “tagged” as is used. When a call comes into the system it’s tagged with the default phone language configured in the SA under the System Configuration section on the Phone Languages page.

There’s one very important note to make here which seems to confuse folks in the field often. The greetings on call handlers and subscribers are not affect by the language selection at all. Each handler or subscriber has one set of greetings and that’s it, there is no way to record 3 or 4 sets of greetings in each language you want to support and have a single audio text application that serves all these languages. You will need to construct a separate audio text application for each language you want to support.

I think people in the field get thrown off on this count because Unity ships with some default greetings for the opening greeting, operator and say goodbye call handlers that are done in the same voice that does the prompt sets. I’m often asked why the opening greeting is still in English even though the language for the opening greeting is set to another language. This is expected. The greetings are up to you to record in whatever language you want to support. If you installed Unity with a default language of Spanish, for instance, the set of greetings for the opening greeting, operator and say goodbye call handlers would be in Spanish, not English. However the same rule applies, if you want to change the opening greeting call handler to play French now, you need to set it to French as the language callers hear AND record the greetings in French yourself, they will not change automatically for you. The same applies, of course, to voice names and questions for interview handlers.

The greetings are actually the majority of what outside callers hear. The prompts are just the system generated phrases such as “Please hold while I try that extension” or “spell the last and first name, then press pound” and the like. The majority of the 2000+ prompts in the Unity conversation are used for subscribers when they call into their mailboxes, retrieve messages and configure their mailbox options over the phone. As such the major burden for creating multiple language applications falls on the administrator.

As noted above, you will need to construct identical audio text trees for each language you want to support. Currently there’s no handy tool for duplicating entire trees quickly, however I do have this on my list of things to take on. However this is much trickier than it looks at first glance as we’ll discuss a bit in the programmatic administration chapter. Further, not every audio text application is a nicely segmented tree of call handlers that can simply be duplicated. There are often shared objects that don’t need to be localized separately such as directory handlers which don’t have greetings associated with them. So this means for now you will need to construct your audio text applications in their entirety for every language you want to support. You’ll definitely want to look into using the Audio Text Manager tool for this as it’ll reduce the time to do this over the SA ten fold.

The big thing you have to decide is how callers will be routed to the “root” of the appropriate audio text tree based on the language they want to hear. There are a few ways to approach this problem:

· The slickest method here is to create routing rules and use separate DID numbers for each language you want to support. In this way, for instance, a company could advertise different 800 numbers in different language publications such that callers dialing those numbers would automatically be routed to the appropriate language interface in the database without having to do anything.

· You could setup routing rules that did the same thing as the DID lines would except they would trigger off of forwarding numbers for virtual extensions in the switch instead of dialed numbers. This may be a somewhat lower bar for folks to get over than using dedicated DID lines.

· You could also dedicate particular ports for particular languages and have the routing rules tag off the port range for deciding which entry point the caller is sent to. This is a lot tougher to get right since it requires you nicely load balance your ports based on how many callers using which language will be hitting your system. Generally segmenting your ports in this way is a pretty bad idea but the option is there if you need it.

· You can go “old school” and route all calls to a single call handler that’s configured to play a greeting that says something like “For English, press 1, for Spanish, press 2…” and let the callers manually select which language they want to hear. Of course each option would be presented in the appropriate language and the user input key would be mapped to route the caller to the root of the appropriate audio text tree. This is how a lot of large organizations and government agencies handle this issue since it’s easy to setup and doesn’t require any fancy switch work and will work no matter which integration you are using with Unity. The caller experience here, however, is less than optimal and having to select this each and every time you call would get pretty annoying for repeat callers.

Group Mailboxes

There are times when you need to accommodate multiple subscribers who happen to be sharing a single phone line. For instance in a shared office environment or a dorm room setting you may have multiple users that need their own mailboxes but don’t each have their own phone line for callers to reach them at.

The easiest way to handle this is to create subscriber mailboxes for everyone as normal, however use Ids for the subscribers that don’t overlap with the phone extension numbering plan on the switch(es) Unity is connected to. For instance if there are 4 digit extensions being used on the switch, use 7 digit Ids for the subscribers to use. In a university environment this might be the subscriber’s student number or it could be a employee Id number or something similar. For example if John, Jack and Jim Smith (no relation) are sharing a single phone line in an office would setup subscribers for all three and then construct a call handler that is assigned an extension that matches the one phone line they are using. In the ATM tree view it would look something like this:

[image: image20.wmf]

Figure 7.19

The “Group Mailbox Ext 4001” call handler would have it’s alternate greeting enabled which would have a greeting that sounded something like “To leave a message for John, press 1, to leave a message for Jack, press 2, to leave a message for Jim, press 3, to reach the operator press 0”. You would, of course, want to repeat the greeting at least once to callers have a chance to enter the option they want. In this way each of the Smiths could get messages in their own boxes. Each of the Smiths would sign into the system using their 7 digit Ids and their own passwords to get at their mailboxes. Of course they would have to log in manually if they were all calling in from the same phone since automatic login only works if the calling extension matches the ID of a subscriber which in this scenario will obviously not be the case.

You can get a little fancier with this model and create a distribution list that contains all the subscribers at a shared extension and set the after greeting action for the call handler to be “take a message” and have the message left for the distribution list. In this way you could add a note to the greeting that says “… or stay on the line to leave a message for all the Smiths” in case the caller wasn’t really sure which one they wanted to talk to or wanted to leave a message for everyone.

Since each of the Smiths has their own ID associated with their mailbox, folks that call them regularly can dial their extension directly from the auto attendant instead of dialing, say, 4001 or forwarding in from the 4001 extension. For instance if a caller reached the opening greeting and dialed “5551001” they would get John’s mailbox directly. You could even have each of the Smith’s phones setup to ring extension 4001 in their transfer rules first before going to their respective personal greetings. If you want to do this be sure to use the “Introduce” and “Confirm” options on the transfer page which will play the voice name of the subscriber and give the person the option of taking the call or not. In this way if a call comes in for John and Jack picks up, Jack can send the call directly to John’s greeting without talking to the caller or can accept the call and hand the phone to John if he’s there.

Find first available extension (Poor Man’s hunt group)

In some scenarios it’s handy to be able to try a series of extensions until you find one that’s not busy. For instance a group of extensions for handling incoming sales or support calls. Normally this is best done by the phone switch itself which will most often have more sophisticated and cost effective methods of handling large numbers of calls waiting to find an open extension than Unity has at it’s disposal. However, in the case where Unity is running behind a switch without such capabilities or for small scale needs where the call is not going to end up parking on a port in Unity should a line not be available it may make sense to have Unity do the “hunting” for you here.

To do this in Unity you’ll want to take advantage of the “blank” greeting option which is provided for fast call routing scenarios just like this. Lets say you want to have Unity try to find an open extension between 4001 and 4009 and if none of the extensions are available, send the caller to an interview handler and collect the callers’ information for later call back. To do that, follow these steps:

· First, create 10 call handlers and configure their alternate transfer rules to be active and have them configured to do a supervised transfer to extensions 4000 through 4009 respectively. You do not need to assign extensions to these call handlers if you don’t want to, it’s only necessary to configure the transfer rules properly to get Unity to try the phones you want here. Depending on how you’re routing callers to this “hunt group” it’s probably a good idea not to assign extensions to these handlers if you can help it. Note that this scenario assumes that if an extension is not busy that someone will be there to answer it so if you have agents in this group have them be sure to take their extension out of service with a DND setting or the like so the switch will return busy when we try the extension. If Unity spends time ringing the phone 4 times or more on these extensions the caller could be waiting quite a while.

· Configure the alternate greetings for all 10 of the handlers to be active and have the greeting source selected as “blank”. Using “blank” here instead of using a custom recorded greeting that is blank means Unity will blow through the greeting and take the after greeting action instantaneously. Using a blank custom recorded creating will result in a second or two of delay even though there’s no greeting recorded. This may not sound like much but when strung over 10 or 20 call handlers it makes a very big difference.

· Configure the after greeting action for each of the first 9 call handlers to be “attempt transfer for” the next call handler in the chain. Be sure not to use “send to greeting for” here since that would mean Unity would not actually try any of the extensions in the chain.

· On the last call handler (4009 in this case) you will need to decide what to do since this means none of the extensions were open. In this example we would have the after greeting action set to go to an interview handler that is configured to take the caller’s information and leave the message for a subscriber or public distribution list where someone can call them back when an agent frees up.

You could, of course, have the last call handler play a greeting that says no one is available now followed by some hold music that lasts 30 or 60 seconds and then have an after greeting action of sending the caller to the “attempt transfer” point on the first call handler at extension 4001. This would have the effect of queuing up calls until an extension becomes available. While this would work, it will also chew up a port on your Unity system for each call holding in the queue. There’s no easy way to limit how many calls Unity will allow to pile up here so with any kind of heavy call traffic here you run the risk of chewing up all your ports with this application. In general this is a bad idea unless you’ve somehow limited how many callers can reach this application. For instance you can have calls that come in on particular ports on Unity go to the application and provide no other mechanism for reaching the hunt group “head”. In this way you could limit how many callers could be in the queue at any given time. However this is a pretty awkward mechanism and I’d definitely recommend using your switch to handle such queuing capabilities to avoid problems with limited port resources on the Unity box.

You could also have the last call handler loop back to the first call handler and just keep trying until an extension opens up. Do NOT do this. Not only will you chew up port resources on the Unity server to do this, in the case of a Call Manager integration you may actually put the switch into a tail spin. Since the busy state comes back immediately in a call manager integration this would whip through all the handlers over and over again hundreds of times a second which could overload the system. If you really want to queue the calls up be sure to have a 30 to 60 second greeting in the last handler before going back to the head of the hunt group.

One last note to keep in mind here. Different switches will take different amounts of time to determine if an extension is busy or not. As such you may decide to include an actual recorded greeting that says “please stay on the line, your call is important to us…” every 3 or 4 handlers in the chain. In the case of a Call Manager integration this isn’t necessary since the busy state is reported immediately. However for analog switches this can take a little while since the Dialogic card actually has to “listen” to the tone patterns being played back to us to determine if it’s busy signal or ring tone before reporting the state back to Unity. This can take a couple cycles which can chew up a few seconds. Be sure to test how long of a delay callers will hear in your system for this scenario and remember that they wont be hearing anything at all in most cases. If callers hear more than 5 seconds or so of dead air they may assume the call has been dropped and hang up on you.

Holiday greetings

Unity does not have a designated greeting that will play during holidays. Unity does have the concept of a holiday, however this simply forces the schedule to report back that it’s off hours no matter what time of the day it is for the days that are marked for holidays. As such during holidays all the call handlers and subscribers and routing rules etc… that check the schedule will act on their “off hours” schedule actions. This is not ideal for many companies since they want special greetings to play to callers when their company is closed for the day for a holiday that’s distinct from their general “we’re closed now” greetings.

You can, however, provide this functionality with a little extra work. By leveraging the fact that during holidays the schedules are ALWAYS returned as off hours you can chain three call handlers together to provide a standard, off hours and holiday greeting for your company. As long as you’re only providing this for your “entry point” call handlers for outside callers this is a reasonably practical solution to the problem. Let’s say, for instance, you want to configure your system such that the opening greeting provided a special holiday greeting you record for each new holiday coming up. To do this follow these steps:

· Create a “business hours” and an “off hours” schedule. The business hours schedule would be active, for instance, between 8am and 5pm. The off hours schedule would be active between 5pm and 8am. In other words these schedules are exact opposites of one another. Make sure both schedules have the “Observe Holidays” option checked. This option ensures that the schedules return “off hours” no matter what time of day it is during a holiday.

· Assuming you’re using the opening greeting call handler for the business hours handler here go ahead and create two new call handlers called “opening greeting – off hours” and “opening greeting – holiday” so they’ll appear next to each other when the list of handlers is presented in the SA or in the ATM interfaces.

· Associate the “opening greeting” call handler with the “business hours” schedule and the “opening greeting – off hours” handler with the “off hours” schedule. It does not matter which schedule the “opening greeting - holiday” call handler is configured for since we’ll be using it’s alternate greeting which will play regardless of schedule.

· Record your normal day greeting in the “opening greeting” call handler’s standard greeting. Record your normal off hours greeting in the “opening greeting – off hours” call handlers’ standard greeting (don’t get confused here and use the off hours greeting, that wont work here). Record the greeting you want to play for the next upcoming holiday in the “opening greeting – holiday” handler’s alternate greeting and make sure it’s alternate greeting is active.

· Set the off hours greetings for both the “opening greeting” and “opening greeting – off hours” call handlers to be active and to have the source selected as “blank”. Make sure the alternate, internal and busy greetings are all disabled.

· Set the after greeting action for the “opening greeting” call handler’s off hours greeting to be “send to greeting for” the “opening greeting – off hours” call handler. Set the after greeting action for the “opening greeting – off hours” handler’s off hours greeting to “send to greeting for” the “opening greeting – holiday” call handler.

You’re done. The holiday call handler will only be reached when it’s a holiday and no other time. All other times only the day or off hours opening greeting call handlers will be accessed depending on what time of day it is. So what’s happening here and why does this work? Since you selected “observe holidays” on your schedules they will always return “off hours” during the day you have designated as a holiday. As such on holidays the call will hit the “opening greeting” call handler and be sent to the “off hours” greeting which is configured to hand the call to the “opening greeting – off hours” call handlers. It will always get sent to the “off hours” greeting for that handler as well which is configured to pass the call through to the “opening greeting – holiday” call handler. Since that handler’s alternate greeting is active and recorded it will play and then take whatever after greeting action you choose regardless.

In this setup all that’s necessary is to record the custom greeting for the next upcoming holiday ahead of time. It’s OK to record it well ahead of time since no calls can ever reach that holiday call handler until it’s actually a designated holiday. Since you can change greetings for call handlers over the phone in Unity 4.0(1) it’s reasonably easy to edit the holiday greeting so long as you assign an extension to the “opening greeting – holiday” call handler. See the “Changing greetings over the phone” scenario above for more on that.

Separate caller input options for day and off hours schedules

Remember from earlier in this chapter that Unity uses the same set of user input key mappings for all greetings on a particular call handler. There is no way to have separate sets of user inputs for each greeting on the same call handler. In some situations this may pose problems. For instance if during the day you want callers to be able to reach the sales support group by pressing “1” but after hours you don’t want that opening available. You can certainly not voice the option of pressing “1” in the after hours greeting for the call handler, however nothing would stop the user from dialing it anyway if they knew the option was there. You could also not allow input during the after hours greeting but this would shut down all user input options entirely which is not really a good solution to the problem at hand.

Using a simplified version of the holiday greeting method above, you can use two call handlers to provide separate caller input options during the day and after hours. Follow these steps:

· Create “business hours” and an “off hours” schedules. The business hours schedule would be active, for instance, between 8am and 5pm. The off hours schedule would be active between 5pm and 8am. In other words these schedules are exact opposites of one another.

· Assuming you’re using the opening greeting call handler for the business hours handler here go ahead and create a new call handlers called “opening greeting – off hours”.

· Associate the “opening greeting” call handler with the “business hours” schedule and the “opening greeting – off hours” handler with the “off hours” schedule.

· Record your normal day greeting in the “opening greeting” call handler’s standard greeting. Record your normal off hours greeting in the “opening greeting – off hours” call handlers’ standard greeting (don’t get confused here and use the off hours greeting, that wont work here). Include the respective one key options you want to provide to callers for day vs. off hours schedule here.

· Set the off hours greetings for the “opening greeting” handler to be active and have the source selected as “blank”. Make sure the alternate, internal and busy greetings are all disabled. Set it’s after greeting action to be “send to greeting for” the “opening greeting – off hours” call handler.

· Configure the user input key mappings for each handler as you like.

Now you can have separate user input key options available during the day and during off hours times. Remember that during holidays the schedules will always return “off hours” all day if the schedules are set to “observe holidays”. Make sure you account for this in your setup here.

Separate transfer rules for subscribers

As noted earlier in this chapter, the only real difference between the call handling characteristics of a subscriber vs. a call handler is that subscribers only have one transfer rule that’s always active. There is no separate standard, off hours and alternate transfer rules as there are for call handlers. For subscribers, the transfer rule is always active so if you have it set to ring a phone it’ll ring that phone 24 hours a day 7 days a week if a caller dials the subscriber’s extension via the auto attendant.

In situations where the extension being dialed is at the work place this may not present a problem since it’ll just ring a set number of times and then forward to the subscriber’s greeting as it should. However in cases where the subscriber is working from home, for instance, and wants to be called only until a reasonable hour in the evening, this is not an ideal state of affairs.

Unfortunately there’s no clean way to work around this that doesn’t involve some amount of administrative overhead. When folks ask me about such scenarios normally I recommend they use a call handler that’s associated with the subscriber in question to get around this limitation.

· Set the subscriber to not transfer anywhere but instead to go right to their greeting.

· Enable the alternate greeting, have it’s source set to blank and have it “attempt transfer for” a new call handler created just for this subscriber.

· For the call handler, associate it with a schedule that’s appropriate such as “standard” hours between 8am and 5pm or the like. Configure the standard and off hours transfer rules as appropriate. Presumably the standard transfer rule would be setup to ring their home phone (see the “calling external numbers” section above for more on this) and the off hours transfer rule would be set to not transfer but go right to the greeting. You’ll want to use supervised transfers in this scenario so call progress to an external number may be an issue. You’ll definitely want to test a few calls to make sure this goes smoothly.

· Record the greetings for the call handler that are appropriate. You could elect to have a generic greeting that you record in the alternate greeting that plays all the time or use separate standard and off hours greetings as you like. Which ever you choose have the after greeting action setup to take a message.

· Configure both the owner and the message recipient to be the subscriber you’re building this call handler for. This way the messages taken for this call handler show up in their mailbox as normal and they can change the greetings for the call handler over the phone using the “greetings administration” conversation option (see the “Changing greetings for call handlers over the phone” section above for more on that). Remember that for the subscriber to be able to change the greetings for the call handler over the phone it must have an extension associated with it. You may opt to use a numbering convention such as “9” followed by the subscribers extension or the like so it’s easy for them to remember.

Callers wont know they are being transferred around to a call handler behind the scenes, however for both the administrator and the owner of the mailbox this does entail some extra work. For large numbers of subscribers needing this type of functionality, you may want to check out the “Bulk Handler Create” tool out on http://www.CiscoUnityTools.com.

The call progress to the home phone in this scenario can be an issue. If the home phone can be configured to forward back to Unity on busy or RNA issues you can use release transfers here which would help. Make sure the call handler is assigned an extension that corresponds to the forwarding number here, don’t associate it with the subscriber. When a call forwards into Unity, it’ll look up the extension in the database and then go right to the greeting for that handler or subscriber and override the transfer rules for it so we don’t get stuck in a “transfer loop”. However if you do this for the subscriber in this case the greeting rule then sends the call to the call handler’s transfer rule and you WILL be caught in a transfer loop. If the call handler’s extension matches, however, Unity will automatically over ride the transfer rules for the call handler and send the caller to the appropriate greeting for that handler instead which is what you want.

This is more work than it really should be, I know. Including all three transfer rules for subscribers is on the radar for future versions of Unity, hopefully it’ll be there soon and folks wont have to jump through this hoop.

Working around forwarding transfer rule over ride

As noted in the last example, when a call forwards into Unity the extension reported as the forwarding station is searched for in the database. If it matches a call handler or subscriber, the transfer rules for that object are deliberately skipped and the greeting rules are evaluated instead. This is done to prevent callers from getting stuck in a never ending loop of transfers and forwards back to Unity which then transfers back to the number etc…

However, there are some rare cases where you may want Unity to ring another phone if a call forwards into Unity from a particular extension. Normally it’s best to do this with switch programming and not use Unity for this type of thing but there are times where that’s not an option.

Lets say you want calls that come forwarded busy from extension 7001 to be redirected to call extension 7002 all the time. If you just setup a call handler with an extension of 7001 and setup it’s alternate transfer rule to be active and to do a release transfer to 7002 it would never do what you want it to. Unity would find 7001 in the database when the call forwarded in from 7001, however it would not execute the transfer rules, it would go to the greeting rules directly instead.

To get around this, the “blank” greeting source is once again your friend. The simplest method is to set the busy greeting to be active, set it’s source to “blank” and have it’s after greeting action configure to “attempt transfer for” itself. Yes, set it’s destination to be the call handler with extension “7001”. This seems odd but what happens here is Unity clears the “transfer over ride” flag when it hits the busy greeting and when you loop the call right back around to the same call handler it’ll go ahead and evaluate the transfer rules and do a release transfer to 7002 as you want.

Keep in mind this can be very dangerous. We put the transfer over ride flag in there for a very good reason. If, for instance, you fat fingered the transfer destination and stuck in 7001 instead of 7002 you would create a very bad transfer loop which could end up crashing your Call Manager and certainly chewing up CPU resources on the Unity box at minimum not to mention stranding your caller in limbo hearing nothing but dead air for who knows how long. Don’t do this. The only time it’s appropriate to use call deflection like this is if you’re sending the caller to a DIFFERENT extension than the one that forwarded in and the need to do even that should be very rare. If at all possible you should be providing such functionality with switch programming.

Send directly to greeting from the operator console

This is probably the most frequently asked question in one form or another that I get via email or on the Unity forum. Part of the problem is that many folks are under the misimpression that doing such transfer over rides from the operator console should be a function of the voice mail system somehow or another which is just not the case. Oddly enough no voice mail system that I know of has a telepathic interface that can feel the will of a caller who wants to send a call directly to a subscriber’s greeting without ringing their phone first. That’d be handy, but it’s just not there yet and the rather painful headset the receptionist would have to wear to pull it off would likely be an inhibitor to the sale.

How this is handled in most situations is via a transfer over ride function in the switch itself. Just about every PBX out there has such a function and in recent versions so does Call Manager. This works in a very straight forward manor. A code the receptionist can dial tells the switch not to ring the phone for that extension but to instead act on the phone’s RNA action programmed for that extension – this is normally set to go to voice mail. For instance if the receptionist had someone on the line that wanted to leave a message for the person at extension 1234 they would put the caller on soft hold and dial something like 1234#7 and then complete the transfer. The switch then forwards the caller to the voice mail system just as if they had rang the subscriber’s phone and it forwarded in RNA. The voice mail does not know the difference between this operation and one that normally forwarded from an extension after ringing a number of tiems. That’s the idea, it shouldn’t have to.

I’m not going to go into detail about how to do this in Call Manager or any other PBX – you’ll need to refer to your switch vendor’s documentation for more on that. In the case of Call Manager, here is a link to a tech tip that covers the versions that support this function and how to set it up: http://www.cisco.com/warp/customer/788/AVVID/transfer_voicemail.html
If you’re stuck in a situation where your switch does not support a transfer over ride capability, this gets a whole lot less smooth. Unity does support a transfer over ride function from within the auto attendant which you can use here. From the opening greeting if you dial 1234#2 all as one number (don’t pause after the 4 here – folks make that mistake often) Unity will skip the transfer rules for the subscriber at extension1234 and will go right to their greeting.

There’s a couple of issues with this. First, the receptionist must first dial into Unity’s auto attendant and then dial the extension followed by #2 for this to work. This is considerably more time consuming that just dialing the extension with a transfer over ride function and releasing the call. Also, if the receptionist’s phone corresponds to an subscriber in the voice mail system, they will be automatically logged in as a subscriber which requires they “back out” of the sign in conversation first and THEN dial the extension followed by #2 which is even more cumbersome.

One way to ease this problem is to have the receptionist access the voice mail system using a separate number when wanting to do such a transfer which routes to a call handler that just plays a greeting so they can dial the extension followed by #2. You would create a routing rule that says any call forwarding from this virtual extension you create goes to your special handler setup for this. You would put this at the top of your routing rules so it wouldn’t attempt to forward to a greeting or do an attempt sign in or the like. This would at least ensure that the steps for the receptionist are limited to dialing into Unity, dialing the extension desired followed by #2 and then releasing the call. Still not as smooth as using the switch to do this but not as bad as having to back out of their subscriber mailbox every time they call in either.

Tenant Services

Before going further here it needs to be said that Unity does not yet properly support true tenant services configurations. You can get reasonably close for low end applications but there is no proper directory or administration segmentation which would be necessary in a full tenant services application. These things are on deck for future versions of Unity but are not there today. If, however, you’re looking to provide voice mail services for a couple small companies and they can handle their subscribers being able to find other subscribers outside of their company in the address book, you can get most of the way there with Unity 4.0(1).

The main goal for a typical tenant services application on the low end here is to process external callers into different sets of call handlers and make sure they can’t jump out to another company’s set of handlers or subscribers. As far as possible the subscribers should also be unaware there are other companies using the same voice mail server they are, however this can’t be achieved completely in Unity today. Here’s a short list of the steps you can take to create a new “tenant” on your Unity server.

· The first step is to create an opening greeting call handler for the new tenant. You can, of course, create entire audio text applications if you like but at a minimum you need a call handler to play a greeting that gives callers the chance to enter a subscriber’s extension. Even if you’re not going to be allowing outside callers access via auto attendant features, you still need to do this since subscribers have to have some place to go when they exit their conversations as noted below and will also need some way to log into their mailbox from outside the company.

· Next, create a routing rule that sends callers to this new opening greeting call handler you created for the tenant. Typically this would be done via dialed number routing such that each company can have their own dial in number for external callers and subscribers to use when outside the company.

· Make sure that all the call handlers created for this tenant all have their exit destinations setup properly. We’ve discussed this topic to death earlier in this chapter so I wont repeat the details here but make sure you watch the error greeting destination and the user input key mappings in particular. I provide a quick check list of the database objects and their exit points you need to worry about at the end of this section.

· Create an “all subscribers” public distribution list for this tenant, named appropriately of course. This comes in handy for several things down the road including offering name lookup handlers that limit the searches to subscribers in this tenant and you can apply Bulk Edit changes to all subscribers in a tenant quickly and easily using this distribution list as a filter.

· Create an operator call handler for that tenant. Presumably each tenant will want their “0” out keys going to their own receptionist.

· Create a “Say goodbye” call handler for that tenant. You’ll need to be sure to use this say goodbye call handler as the after message destination and the like for all subscribers and call handlers created for this tenant.

· Create subscriber templates for this tenant and use them when creating subscribers for them. This is the easiest way to keep the exit destinations and default distribution list membership stuff straight. Make sure you associate the “all subscribers” public distribution list with the template(s) for this tenant so it stays properly populated as you add subscribers to your tenants. Also make sure you set the subscriber exit destination up to be the opening greeting call handler for this tenant. You’ll find this on the conversation page for the subscriber template and by default it’ll go to the opening greeting call handler created by the Unity setup which is not where you want subscribers going when they exit the subscriber conversation by hitting “*” in this scenario. Don’t forget your error greeting and after message actions since by default those will both take callers out of this tenant’s set of handlers which is not what you want.

· Create a name lookup handler specifically for the subscribers associated with this tenant. The easiest way to do this is to have the name lookup handler configured to use the “all subscribers” distribution list created in the last step as a filter. If you wont have outside callers finding users by name this step isn’t strictly necessary.

At this point you’re ready to add subscribers for that tenant. Just for quick review, here’s a short check list of exit points from each database object that you have to worry about in a multiple tenant environment:

· Call Handlers. The user input keys can all map to external object which may be outside the objects for a particular tenant. In particular the “0” key for operator access needs to be checked. The after greeting actions for all greetings, particularly the error greeting, need to be checked. If you haven’t already, you should expose the error greeting in the SA using the Advanced Settings Tool. The after message action needs to be watched. The default “say goodbye” sends the caller to a single call handler created by setup and if the user opts to dial another extension from that greeting they could easily end up in the wrong set of objects, particularly if you’ve locked down keys for user input.

· Subscribers. All the same exit points that exist for call handlers exit for subscribers, of course. One additional exit point for subscribers is found in the conversation page that was introduced for Unity 4.0(1). This is the exit destination where subscriber’s are sent when they “*” out of their message retrieval conversation. By default this is the opening greeting call handler created by setup which is not likely what you want here.

· Interview Handlers. There’s only one exit destination for interview handlers that’s taken after the caller responses are recorded. Again, the default here is to send the caller to the say goodbye call handler created by setup. You’ll want to change this to be the say goodbye call handler you add for the tenant in question.

· Name Lookup Handlers. There’s only one exit destination exposed for name lookup handlers and it defaults to the opening greeting call handler created by setup. You’ll want to change this to the opening greeting created for this tenant.

If you can plan ahead and have each tenant’s phone extension numbering plan nicely segmented such that tenant 1 has extensions that start with 1 and tenant 2 has extensions that start with 2 and so on you can get fancy and lock those keys down in the other tenant’s audio text applications. As such outside callers would be unable to accidentally direct dial a subscriber associated with another tenant. This, of course, limits you to 9 tenants but is a nice way to segment your directory on the cheap. It’s less work and safer to simply not allow direct dials at all and force callers to go through the name lookup handlers for each tenant if they want to reach a subscriber through the auto attendant. This may be a little harsh if you are not setting up DID lines for users to get right to the subscribers they want, however.

Be aware that there is nothing you can do to keep subscribers from addressing messages to other subscribers, even those associated with other tenants. Since subscriber lookups by name or ID automatically include all subscribers on the box (and optionally subscribers on other Unity servers on the network) there isn’t anything you can do presently to prevent this. There’s also no way to allow each tenant administrative access for their own users and handlers in the database via the SA without seeing the other tenant’s objects. Both these items are on deck for development work soon but will not be there for a while yet.

There are still two hard coded reference to the opening greeting that you cannot control in Unity 4.0(1). From the subscriber sign in conversation if the user presses “#” instead of entering their ID, Unity will send the caller to the opening greeting call handler. This isn’t a common scenario but it can happen and they will put subscribers outside their “tenant” objects which could be confusing. The other hard coded reference is of the Unity conversation invokes the “failsafe conversation” due to a database error, it will send the caller to the opening greeting call handler in most cases. This is also not adjustable but should be a reasonably rare occurrence which can be further limited if you check your system’s health with the latest dbWalker version regularly. Recent versions include the option to run automatically on a scheduled basis and email the results to one or more administrators which can be a handy feature for staying on top of common “broken link” problems that may result in failsafe conversation events.

Customizing Unity Prompts

I’m often asked how to get rid of a couple specific prompts (noted below) in the Unity conversation in the forums and via email. Yes, you can replace these prompts with a silent prompt and effectively remove them from your system. While I’ll list the steps to do that here you need to understand that TAC does not support this and any Unity upgrade, even between minor versions, will replace the modified prompt with it’s default version again. If you elect to modify these or any other prompts, TAC will not help you with this and you will have to redo the procedure again after you upgrade your system.

That said, this isn’t too terribly difficult. If the Unity setup didn’t wipe out such changes on upgrades we would have a prompt editing tool to help users do this type of thing “on the up and up”. However with the upgrade situation being what it is, providing a tool to do this seems pointless. The setup is being redesigned for Unity moving forward and this is one of the issues on the plate for the folks doing that work so hopefully we’ll be able to get a proper prompt editing tool in place to help with these items moving forward.

“Please hold while I transfer your call”

When Unity goes to perform any transfer, either supervised or release, it plays this prompt to callers before “hook flashing” to put them on soft hold and trying the number. In some cases sites really hate this, particularly if a call is going through several handlers looking for an available extension (see the “poor man’s hunt group” section earlier).

The very sharp observer will note that on the contact rules table in SQL there is a column called “StreamPath” which is a column name usually used to point to a WAV file for playing voice names and greetings. This value is not used, however it was originally intended to allow administrators to customize this very message played to callers on a per handler/subscriber basis. As such if you wanted to play a message to callers here you could, if not you simply would select “blank” as you do for greeting rules. Unfortunately this work was never done so the system defaults to playing the hard coded prompt for all transfers on all handlers and subscribers.

The first thing you need to do is find the prompt in question. If you go poking around under \commserver\localize\ENU\Prompts\ on a US English system you’ll see there are several sub directories under there. These are all the various phrase groups that Unity uses. Prompts are groups by these conversation areas and under each directory you’ll find a file called PROMPTS.INI. This file contains the full text of all the prompts and the file name it’s recorded in. If you go searching for a prompt this way, be sure you search them all as several very similar (sometimes identical) prompts are recorded in different groups and you may end up changing the wrong one. In this case the prompt you want to replace can be found under \Commserver\Localize\Prompts\ENU\AvPHGreet\AvPhGreetENU005.WAV

Now you can’t just delete the prompt and go. If the Unity conversation goes to grab a prompts to construct a phrase and it’s missing, it’ll get very annoyed, log an error to the event log and send the caller to the failsafe conversation. You don’t want this. To get rid of a prompt you need to replace it with an “empty” prompt that’s just a fraction of a second of silence. There are several blank prompts you can use but I normally suggest using the one found here:
\Commserver\Localize\Prompts\ENU\AvAddrSearch\AvAddrSearchENU003.WAV.

You then would copy the AvAddrSearchENU003.WAV file over the AvPhGreetENU005.WAV file and the prompt will no longer play. No reboot is necessary, the next time Unity goes to play that prompt it’ll fetch the empty file and will play nothing.

If you accidentally wax the wrong greeting or the like, all the greetings for all languages can be found on the Unity install CDs. They are uncompressed and are stored in the exact same directory structure as they’re found in your Unity installation on the hard drive so it’s a simple matter of going and fetching the one you want or doing an XCOPY to reset the entire set of prompts if necessary.
“You may record your message after the tone, stay on the line for more options”

This is the most requested prompt to remove by far. Folks that have custom recorded greetings (that would be most folks) typically do not want this to play since they record in their greetings to wait for the tone and they may not have additional options configured for the after message menus. Yes, this does beg the question of why this prompt is there at all and more to the point why it’s set to play be default. I wish I had a snappy answer for you but I don’t.

To remove it we need to again copy a blank prompt over the offending prompt (or prompts in this case). So, step one is to find a blank prompt and again I suggest using:

\Commserver\Localize\Prompts\ENU\AvAddrSearch\AvAddrSearchENU003.WAV.

There are actually two identical prompts that Unity uses to play this message that are used in two different spots in the conversation. One is used for subscribers leaving messages for other subscribers and one is used for outside callers leaving messages. Folks that want this prompt removed typically don’t make such fine distinctions and want them both out of there. The two prompts are:

\Commserver\Localize\Prompts\ENU\AvPHGreet\AvPhGreet016.WAV
\Commserver\Localize\Prompts\ENU\AvPHGreet\AvPhGreet037.WAV
Copy the AvAddrSearchENU003.WAV over both of these and the prompt will no longer be played.

It should be noted that the number of requests specifically for the above prompts to be removed have been frequent enough to get some folks’ attention here. In subsequent releases of 4.0(x) there should be a system wide configuration option to skip these prompts or not which can be set rather than having to copy blank prompts over them as described here. These configuration settings will also be preserved over upgrades which is much nicer than having to repeat these steps after every update.

Directory Handler name spelling options

Unity offers the option of asking callers to spell the first name then the last name vs. the last name then the first name when outside callers are looking for subscribers in the directory handler. However everyone seems to want these prompts to sound slightly different it seems. Smaller sites want the specific number of letters to be voiced, larger sites want more letters asked for or to go with a generic “spell the first few letters” option. Since there’s no way we can come up with one prompt that will do what everyone wants, we recorded a set of 12 alternative prompts for the directory handler spelling conversation with the same voice that does the rest of the system prompts. You can download the whole shootin’ match from the “Documents” page on www.CiscoUnityTools.com. You’ll find them under the “Alternative Directory Handler prompts” section. Just follow the instructions for unpacking and installing the ones you want off it’s home page.

Note, however, that the Unity upgrade will again replace these prompts with the defaults so you’ll need to reapply the changes after upgrading.

Call traffic reports

There are two reports provided in the SA that are designed to help you track activity in the Unity auto attendant:

· The “Transfer Call Billing” report in the SA “Subscriber Reports” section is designed to provide a complete accounting of all calls being transferred internally and externally for call handlers and subscribers. This provides an easy mechanism for getting a list of all numbers callers have been transferred to over a set period of time. You should be able to tell at a glance if you have a system administrator, for instance, that is using Unity to dial long distance numbers or the like.

· There is also a “Call Handler Traffic” report in the SA “System Reports” section which can provide an accounting for how many calls hit each call handler in the system and how the callers exited them (i.e. selecting a one key option, hanging up, etc…). This can also be helpful depending how callers are using your system, particularly if they are getting impatient and bailing out of your call handler trees by hanging up in frustration. This is a good indication you need to “flatten” your trees or break your audio text applications up so they are not so large and complex.

Troubleshooting and Damage Control

Damage control

As any fan of “Kelley’s Heros” knows, it’s important to have lots of reverse gears so you can get out of trouble faster than you got into it. Always good advice. Before you do much of anything with your system you should understand how to get it back into a running state quickly.

Backups

There’s no excuse to not backup your Unity system information any longer since we’ve been shipping the Disaster Recover Tools (DiRT) since 3.1(4). Once you get your system the way you want it, you should backup with DiRT before you twitch. Without messages this just takes a minute or two. It includes all the SQL data, of course, but also the switch integration files, registry branches of interest, greetings and voice names etc…

Restoring with DiRT is supposed to happen on a clean system, however I put this check in there to protect folks from themselves, not because DiRT needs a clean system to restore onto. If you have a system you just fouled up really bad by corrupting the database (for instance you deleted a bunch of call handlers you didn’t mean to directly in SQL) you can restore from your DiRT back up without reinstalling first by calling it with the “/DirtyRestore” command line option. This will force the DiRT restore to skip the checks to be sure the system is clean and will replace your entire database with the one that was backed up. Be SURE this is what you want to do, however, because there is no undo option here.

Of course you can do entire system backups with tape backup packages like Backup Exec as well however these cost money and are designed to backup and restore entire systems, not just the Unity specific data and are, as such, quite a bit slower at getting your system back up and flying right. DiRT is specifically designed to snag and restore just the Unity related data and, as such, is the perfect tool for covering you’re back if you’re experimenting in your database and have a messy accident.

As a side note, it’s always a very good idea to check http://www.CiscoUnityTools.com for updated versions of DiRT backup and restore tools. This is a good idea for all tools but DiRT in particular is one of those “failure sensitive” items that you really don’t want to run into problems with and so I update them aggressively, even for minor problems that are encountered in the field.

Reconstruct default objects

If you find yourself in a situation where you’ve deleted one or more of you default objects and just want to get them back to their default state, this is easily done using the ConfigMgr.exe application which can be found in the \commserver directory where you installed Unity. This application doesn’t show up in the Tools Depot since it’s considered a little too low level for the typical administrator. But since you’re reading this right now, clearly you’ve distinguished yourself from the unwashed masses and are able to handle it. That said, this IS a dangerous tool and you CAN wipe our your system configuration information in a flash so proceed with caution.

When you open the Config Manager application, as shown in figure 7.20, you’re presented with a list of radio buttons. When one of these buttons is selected it will automatically pick scripts to run from the list of SQL scripts the Unity setup process uses to construct the default database tables during install. In this case you want to pick a script that’s not one of the defaults so be sure to proceed with extreme caution here. If you run, say, the default database configuration script you will wipe all your database configuration customizations out in one step. Don’t do that. Select the “Run Database Configuration Script” radio button and then hit the “browse” button and select the “FixDefaultObjects.slq” script. Your ConfigMgr application dialog should look like figure 7.20:

[image: image4.png]* ConfigMgr [

Configuratin Scipt File Name:
[D-\Commserver\Localize\Defaut Configuration ENU'FisDefaulObjects sl

Biowse

Selectthe Corfiguralion Operation:

Flun Database Schema Scrpt
Flun Database Extended Script

Confgure Database Schema

Flun Database Localization Prep Scrint

Flun Database Configuration Scrint

Flun Bules Configuration Scrpt

Flun Schedhes Confiquration Scrit

Flun Authertication Providers Confiquration Serit
Create Instalr Account

NT focount — [————————
DomainiUser)

Configure Defaul Location

Create AMIS Account

Create Bidge Account

islieNiaYeToNeNio Yo e}

el lle)

€ Reset All Default Confiquation Settings
Note thet ConligurationSetup must be run afterward
€ Upgrads to Latest Version
Note that esisting database wil ot be st

SystemConfg Disgrostcs:

¥ Enable diagngstics

View diagnostic lg. Fun Ext

Figure 7.20

When you’ve double and triple checked that the proper script is selected, hit the “run” button at the bottom and the script will be applied. You’ll then be treated to a very entertaining armadillo jumping around (long story, don’t ask) while it works.

This script will recreate most of the default objects in the database if they are not there. This list of objects it will recreate is:

· The default restriction tables including “DefaultTransfer”, “DefaultOutdial” and “DefaultFax”.

· The DefaultAdministrator and DefaultSubscriber COS objects

· The SayGoodby, OpeningGreeting and Operator call handlers

· The Example Subscriber and Example Administrator subscriber objects

· The DefaultTemplate and DefaultAdminTemplate subscriber template objects.

It wont, for instance, reconstruct your schedules and routing rules or rebuild the default public distribution lists. It’s important to note that this script will only add an object to the database if there is not already one there with a matching alias. If there is an object with that alias it will skip it. As such if you want to have, for instance, the opening greeting call handler reconstructed from scratch but it’s still in your system in a damaged state it will be necessary for you to delete it before running the script. You’ll want to do this directly in SQL using the Enterprise Manager (yes, it’s OK to install the Enterprise Manager even if you’re using the MSDE version of SQL). Go to the UnityDB database, open the CallHandler table and find the call handler with an alias of “OpeningGreetingch” and delete that row. The triggers built into the database will take care of removing it’s contact, greeting and user input rules automatically, you don’t need to worry about that. When you run the script the handler will be recreated.

If you don’t have the Enterprise manager installed and don’t want to take the trouble to do so, you can perform the necessary delete operation using DOHPropTest which can be found in the diagnostic section of the Tools Depot. You will need to enter the password which was discussed earlier (remember it’s [100-month][month+day]) to be able to edit or delete objects. To delete the opening greeting call handler, open DOHPropTest, enter the appropriate password and then select “call handlers” in the far left list. Select the “openinggreetingch” alias in the middle column, this is the opening greeting call handler’s alias. Since it’s marked as undeletable in the Unity interface, DOHPropTest will not let you remove it until you clear the flag. To do this select the “AVP_UNDELETABLE” value in the far right columns, enter “0” as the value at the bottom and hit the “set” button. Now you can delete the call handler itself by pressing the “remove” button in the middle of the form. This will remove the handler and all it’s contact rules, menu entries and messaging rules. You can then run the FixDefaultObjects.sql script to recreate it.

Reconstructing the default Routing Rules

If you foul up your routing rules and Unity is no longer processing inbound calls properly you may just want to rebuild the default call routing rules again and start over. Again, using the ConfigMgr application noted above, select the “Run Rules Configuration Script” radio button and the script you want will automatically be selected. Hit the run button and restart Unity. Since the routing rules are loaded into a table in memory at startup the new rules wont be visible or acted on until you restart the system.

It should be noted that this script will wipe out all routing rules you may have in your system and replace them with the defaults. It is not like the “fixDefaultObjects.slq” script mentioned above as it does not care what’s there in the database already.

Reconstructing the default Schedules

If you foul up your schedules or happen to remove the default rules by accident, you may want to rebuild the default schedules. Again, using the ConfigMgr application noted above, select the “Run Schedules Configuration Script” radio button and the script you want will automatically be selected. Hit the run button and restart Unity. Like the routing rules, the schedules are loaded into a table in memory at startup and the new schedules wont be visible or acted on until you restart the system.

Again, this script will wipe out all schedule information you may have in your system and replace them with the defaults. It is not like the “fixDefaultObjects.slq” script mentioned above as it does not care what’s there in the database already.

Troubleshooting

Certainly there are a lot of diagnostic traces and tools that can be used to troubleshoot problems you may encounter processing calls in Unity. However the scope of this book does not extent to detailed troubleshooting steps by any means. That said, there are a few tools you can use to get a handle on where calls are going in your system and why which we’ll cover here.

Event log

Whenever you’re trying to run down any problem in Unity you should always check the application event log for errors. Many times the problem will reveal itself there since Unity is designed such that the event log is the entry point into the troubleshooting process. For instance if you create a routing rule that points to a call handler that is then subsequently deleted, callers will hear the “fail safe” conversation saying an error has occurred and you’ll see this entry in the application event log:

Event Type:
Error

Event Source:
CiscoUnity_Arbiter

Event Category:
Run

Event ID:
1017

Date:

12/1/2002

Time:

3:02:20 PM

User:

N/A

Computer:
LLTHINKPAD

Description:

[Port 2] Failed attempting to load database object for application [PHGreeting], specified in routing table rule [0]. Use the RulerEditor to find the rule and check that the database object exists. For more information, click: http://www.CiscoUnitySupport.com/find.php

This indicates that the first rule in the routing rules list failed – it doesn’t indicate which rule specifically as it could be a forwarding or a direct call rule but you should be able to narrow it down fairly quickly. Note that the advice in the event log message above to use the “ruler editor” to check this out is bad advice – it should be more than sufficient to use the rules editor in the SA to find what the problem is and a whole lot less dangerous.

Another thing to note here is that the “fail safe” conversation behaves a little differently in 4.0(1) than in previous versions of Unity. The users hear “Sorry a system error has occurred, please report this error to your system administrator” and then the call is routed to the opening greeting. In earlier versions of Unity the fail safe greeting would be played and then the caller would be hung up on. If the error is catastrophic enough (i.e. the opening greeting call handler is removed from the system) you will still end up getting hung up on but for the most part this wont happen. In the case of a missing message recipient on a call handler, for instance, the failsafe message will play and the call is sent to the opening greeting instead of just hanging up on the caller as was done in previous versions. This still lets admins know there is a problem without unduly terminating calls on a common problem such as that.

Call Viewer

[image: image21.png]0: Operator - Ext0 - (Fing Phone)
1:dohn Srith - Ex 5551001 - (Ring Phore)
2:ack St - Es 5551002 - (ing Phone)
3 Jim Smith - Et5551003 - (Ring Phone]
¥ 4 Ignore Key

V5 Igrore Key

V6 Ignore Key

¥ 7 Igrore Key

¥ 8 Ignore Key

¥ & IgroreKey

' Route to Subssiiber Sign In

' # Opening Greeting - Ext{empty) - (Ring Phone)

As was discussed earlier in this chapter, the call viewer application is ideal for seeing what information Unity is actually getting from the switch on inbound calls. It’s a very good idea to look here first to make sure calls are coming in with the data you assume they are before running down the “what’s wrong with Unity” path too terribly far. Figure 7.21 is a screen shot that shows what the call viewer looks like with some direct and forwarded calls coming into Unity:

Figure 7.21

If the information you’re seeing here doesn’t match what you’re expecting and you’re using a serial or analog integration to your switch, you can sometimes get additional information using the Integration Monitor. See the Switch Integration chapter for more.

Status Monitor

The status monitor tool can be found in the Tools Depot under the Switch Integration Tools section. Do not confuse this tool with the status monitor web site that is the companion to the SA as they are not the same thing at all. The status monitor tool shows a lot of detailed information about what’s happning on calls on each port that can be very useful for determining where calls are going in the system and why. Figure 7.22 is a screen shot that shows what the monitor looks like when a call comes into the opening greeting and the user dials “5551001” to reach a subscriber:

[image: image22.png]i Port 2 [_[CIx]

Trace Yiew Window

Playing greeting for Call Handle
ldle

[Conversation State:

State - PHTransfer Loadinfo
Eventis [TrueEvent]

State - Play Greeting

Call answered if needed

DTMF [5]

DTMF [551001]

Event NULL

State - PHTransfer Loadinfo
[Answer Phone if needed

Event s [FalseEvent]

State - Check Play Transfer Intro
Eventis [TrueEvent]

State - Play Transfer Intro

Event NULL

State - Transfer Call

Event is [HangupEvent]
State - HangUp

Event is [HangupEvent]

ldle

=[ofx]

=[ofx]

PHTransfer
PHGreeting
PHTransfer
ldle

Figure 7.22

This shows just a single port being monitored, you can actually view all ports on the system at once if you like however the screen gets pretty cluttered. It’s much easier to monitor a single port and make your test calls to that line if you can. There are three panes in the window that all show different information:

· Display State: This shows very high level information and is, in fact, the text that shows up in the web based status monitor. Not a lot of detail here but it helps you keep the context of what’s going on in the other windows straight as you navigate around the system.

· Conversation State. This shows a lot more detail, some of which doesn’t make a lot of sense to the casual observer (or even the not-so-casual observer). For instance I couldn’t tell you what the “Event is [TrueEvent]” lines in that pane in the screen shot actually mean there. A conversation developer could likely glean some use from that but that’s probably about it. The most interesting thing in this pane is the DTMF events that show each and every key press made. Not that for this test I dialed “5551001” all as one string during the opening greeting. However in the conversation state pane is shows the first 5 by itself followed by the “551001” remainder on the next line. The reason for this is the first 5 pressed interrupted the greeting and is it’s own event. The other digits were part of the “gather digits” event which will gather as many digits as the user enters up to 30 and then do a lookup in the database. It looks a little odd at first glace but it’s supposed to look that way.

· Application State. This shows which conversations are being spawned. In this case the “attempt sign in” conversation is spawned on the direct inbound call by the routing rule. The PHTransfer and PHGreeting conversations are spawned when the call is sent to the opening greeting. You’ll notice the default routing rules send the calls to the “attempt transfer for” entry point for the opening greeting call handler however the transfer rule is disabled so the PHTransfer conversation exits right out and spawns the PHGreeting conversation. The final PHTransfer conversation is the release transfer on the target subscriber being executed (extension 5551001 in this case).

With a little bit of practice you’ll find the status monitor is a very powerful tool for troubleshooting your audio text applications. At the time of this writing an alternative to the Status Monitor tool is being designed and developed by the customer applications team. This will have a simplified interface and should be easier to read and understand the output and will offer improved file output functions (including time stamps and a single output window) to help capture the information you’re seeing. This wont replace the status monitor but will be an alternative to it. Watch www.CiscoUnityTools.com for it’s release with the next follow on version of Unity 4.0(x).

� EMBED Visio.Drawing.6 ���

2of 79

_1092767539

_1099836486

_1092550976.vsd

