1
4.x Architecture Overview

Revision 4

[image: image1.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

IIS.exe

ASP

Internet Information Server

AvSADbConn

Web browsers

HTTP

TUI application

n

TUI application 2

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

Microsoft

Message Queuing

AvSQLSyncSvr

AvMMProxySvr

AvXML

TomCat

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

DCOM

to client

AVTrapSvr

DOHMMSvr

AvCsTrayStatus

Cisco Unity System Administrator

Cisco Unity Assistant

Cisco Unity Status Monitor

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

Document Number
EDCS-221105
Revision
4
Author
Jeff Lindborg

Unity Architecture Overview

Purpose

This document is a high level overview of the Unity 4.x architecture including several “walk throughs” that cover typical system usage scenarios and how individual services and components work within those scenarios. The reader should take away an understanding of what the various services and components are responsible for in the Unity system, how Unity interacts with the directory and message stores, and how the client interfaces into Unity work at a high level.

This document assumes the reader has a basic knowledge of the Unity administration interfaces, it is not an introduction to the Unity system. If you are unfamiliar with terms such as “call handlers”, “call routing rules”, “media master control” or do not know your way around the web based system administration (SA) interface, you will want to first review the Unity System Administration Guide and Unity User Guides. Documentation for all versions of Unity can be found here:

http://www.cisco.com/univercd/cc/td/doc/product/voice/c_unity/
Reviewers

It is the responsibility of each reviewer to provide feedback in a timely manner

Required Reviewers*

	Department/Group
	Name and Title

	Architect Group
	UnityArchitects@cisco.com

*Required Reviewers are reviewers who must approve all content changes

Courtesy Reviewers**

	Department
	Name and Title

	Engineering
	EngManagement@cisco.com

	Program Management
	Ty Thorsen

	Customer Advocacy (SDE & TAC)
	Drew Engle

	Quality Assurance
	Rich Green

	Documentation
	Patsy Cox

	Product Management
	Dan Albaum

	User Interface
	George Engelbeck

	Globalization
	Martin Guttinger

	Sustaining/CPR
	Sridhar Gaddipati

**Courtesy Reviewers are reviewers whose feedback is important to gather and incorporate, but who do not have to formally approve all content changes. Courtesy Reviewers must be notified of content changes.

Modification History
	Rev
	Date
	Originator
	Comment

	1
	7/28/2002
	Jeff Lindborg
	Original Draft

	2
	8/4/2002
	Jeff Lindborg
	Updated with some feedback from the initial reviewers

	3
	8/12/2002
	Jeff Lindborg
	Additional updates, added SA flow walkthrough.

	4
	7/28/2003
	Anil Verma
	Added the reviewers and review notes section to bring this document to ISO standards. This document is not going to be controlled.

	5
	8/18/2003
	Jeff Lindborg
	Updated the content of the document to bring it up to date for the Unity 4.0(3) release. Incorporated feedback from other architects on changes to various components in this release. Fixed various grammar and spelling errors along the way as well.

	
	
	
	

Index

1Purpose

3Index

4Unity Architecture Overview

4Architectural Big Picture

5AvCsGateway

6AvCsMgr

6DOH

8Resource Manager

8Arbiter

8Ruler

9UMR

9TUI Applications

11Log Manager

12MIU

13TAPI (Telephone Application Programming Interface)

13Integration

14SIP (Session Initiation Protocol)

15UnityAvWAV

15Virtual Queue

15RDBSvr

15TRAP Connection Server

16DOHMMSvr

16AvWM

17AvNotificationMgr

17Notifier

18Notification Queue

18AVMsgStoreMonitorSvr

19Directory Monitor

21AVDirChangeWriter

22AVSQLSynchSvr

22AvLic

23AVRepDirSvrSvc

24CSEMSSvc

24AvMMProxySvr

25AvTTSSvc

25CsBridgeConnector

26AvNodeMgr

27TomCat

27Process Walkthroughs

28Outside Caller Leaves a Message

41Change to Mail User in Directory

45Administrator Updates Subscriber in SA

47Review Meeting Notes and Action Items

Unity Architecture Overview

The Cisco Unity server is a complex and powerful application that is made up of numerous individual components and services installed both on the local Unity server itself and, in some cases, on other servers in the network. Further, Cisco Unity interacts with a number of other external applications including Microsoft SQL 2000 or Microsoft MSDE, Microsoft Exchange 2000, Microsoft Exchange 5.5, Active Directory, Microsoft Internet Information Services, Lotus Domino, and also integrates with various phone switches including Cisco Call Manager and a number of legacy analog PBX systems on the market today.

On a typical Unity 4.0 installation you will see in excess of 10 separate services added by the setup process in the Windows Service Control Manager. Understanding all the components in each of these services, how they interact with each other and with all the external components Unity integrates with can, at first glance, be a daunting task. A quick look at figure 2.1 below shows there’s a lot of boxes and lines on that picture, but trust me, it’s not as bad as it looks. Hang with me through this document and you’ll have a much better grasp of how the Unity product works.

First we’ll take a look at the architectural “big picture”, run through all the high level components and discuss what function they serve. After that we’ll do a couple of soup-to-nuts walk throughs and talk about which components are serving what role when a caller leaves a message, when the MWI is turned on for that message, when an administrator makes a change to a subscriber’s record via the system administration console and when a change takes place for a subscriber in the directory.

Architectural Big Picture

Figure 2.1 below is a 10,000 foot shot of all the services and primary components installed on a Unity 4.x server. In the figure, all of the rounded rectangles represent a service or set of services. The ones with a dark background represent items the Unity install did not add to the system but are required to be there for Unity to operate properly.

[image: image2.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

Figure 2.1

Before we run through a couple of scenarios, let’s cover all the services depicted above and broadly discuss their purpose in life. You’ll notice most of the Unity related services start with “AV”. This is because Cisco purchased Active Voice for the Unity product line in 2000 and such designations in the services, registry keys, message classes and other places not directly visible to end users were left as is. The diagram above also shows Unity connected to a Call Manager, remember that Unity can also hook up to legacy PBX switches, SIP gateways or combinations of any two of the three. Just the Call Manager interface is shown here for simplicity.

AvCsGateway

The gateway service does what its name implies, it acts as a gateway into the main Unity components that run under the AvCsMgr process. All outside applications that want to connect to the DOH (Data Object Hierarchy – a wrapper around the directory and messaging interfaces, see below) or any other component running under AvCsMgr has to authenticate with the gateway first. The AvSADBConn component running under IIS (Internet Information Services) which is used to produce the SA web pages has to go through the gateway to get to the DOH where it pulls all the data necessary to produce the various administration web pages. While it’s possible to connect to most components running under AvCsMgr, the usual target for external applications is the DOH. As discussed in the Administering Unity Programmatically document available on www.CiscoUnityTools.com, the need to go through the proprietary DOH interfaces for administration adds, moves and deletes is no longer a requirement as it has been for earlier versions of Unity.

The gateway service also keeps an eye on the status of the AvCSMgr service and can report if it’s up, down, starting up, going down, etc. to external clients that are interested in such things. The tray status application, for instance, polls the gateway periodically and uses this information to decide which icon it’ll show. The tray status application also uses interfaces exposed on the gateway service for starting and stopping Unity which involves shutting down the AvCsMgr, AvRepDirSvr, AVTTSSvr, AvMsgStoreMonitorSvr, AvNotifierMgr and AvUMRSyncSvr services. The rest of the services, most notably the directory monitors and, of course, the gateway service itself, stay up and running even if Unity is off line and not taking calls.

AvCsMgr

The AvCsMgr (Active Voice CommServer Manager) is the main Unity process in the system. In older Unity versions, in fact, only the AvCsMgr and AvCsGateway services were present on a new installation, literally everything ran under the single AvCsMgr process. As Unity has scaled up and added features, various components have been taken “out of process” into their own services. Eventually as Unity moves towards a true clustering model some of these services will actually be able to run off box entirely. At some point, for instance, it’ll be possible to simply add another media server to provide more TTS and/or voice port capacity to a Unity installation. While this is the direction Unity is headed, it’s not there now and everything runs on a single Windows 2000 server at this point. Sites needing to scale beyond the capacity of a single Unity server for ports and/or subscriber resources will need to leverage Unity’s digital networking capabilities and use separate Unity servers to balance the load. You can find more information about Unity networking features for all versions of Unity 4.0(x) here: http://www.cisco.com/univercd/cc/td/doc/product/voice/c_unity/unity40/net/index.htm
There are a number of important processes that run under the AvCsMgr service. The following is a list of the more important components.

DOH

The Data Object Hierarchy is the abstraction layer over the directory and messaging back ends supported by Unity. The idea here is simple: provide a common interface for all client applications such as the phone conversations, administration interface, reports and the like for getting at directory and messaging information from Exchange 5.5, Exchange 2000, Exchange 2003, Active Directory and Domino.

The DOH has two main sub components: The Directory Access Layer (DAL) and the Message Access Layer (MAL). The original idea was to provide different MAL and DAL “plug ins” for each back end Unity supported. Clients would be blissfully unaware of the wildly different access protocols going on underneath the DOH. The first incarnation of the DOH was an abstraction layer over the Exchange 5.5 directory and mailbox data for Unity 2.x when all Unity directory information and messages were stored right in Exchange. The LDAP and MAPI interfaces used to get at this data in Exchange 5.5 is more of an art than a science and having a fully functional wrapper around this complexity was an absolute must.

When Unity 3.0 hit the streets and introduced SQL as the primary directory repository, the necessity of the DOH wrapper around database access was not nearly as critical. Unity now employs directory monitors to pull in data from the directory to a local SQL database and to write necessary changes back to the directory. This would enable clients to simply use standard SQL access mechanisms to retrieve and update data instead of using the proprietary DOH interfaces. However time to market considerations deemed it necessary to leave the client interfaces into the DOH alone and simply re plumb the DOH back ends to talk to both the directory monitors and the SQL database.

While the DOH is still in use in Unity 4.x, its days as the primary back end wrapper for the directory are numbered. As discussed in the Administering Unity Programmatically document noted above it is possible to interface directly with SQL for all your basic Unity administration needs and never talk to the DOH at all. The long term model is to have all clients use interfaces right into the Unity SQL database (via XML/SOAP/ADO/ODBC/JDBC/Other interfaces) and rely on the directory monitors to do the heavy lifting for the various back ends supported. See the Directory Monitor section below for more on how that works.

While the DAL component under the DOH is being phased out, the MAL wrapper around the messaging tasks will likely live on for a while in one form or another. In the case of Exchange the MAL uses MAPI client access methods very similar to what an Outlook client does to gain access to a mailbox. During the configuration setup a special mailbox named “Unity_(server name)” is created on the Exchange server selected as the “companion server” for Unity (which could be on the same box with Unity). This mailbox is referred to as the “Unity System Mailbox” in the documentation. A MAPI profile is created on the local Unity server that “points” to that mailbox. This message profile is very similar to a profile you’d create for your Outlook client that points back to the Exchange home server your mailbox is stored on. The Unity system mailbox profile, however, is optimized in a couple of ways such that it can support many hundreds of simultaneous MAPI connections which is not possible with a standard profile. In short this profile is Unity’s ticket to the MAPI ball and we use it to gain access to all mailboxes for subscribers serviced on the local Unity server. This profile and the Unity system mailbox account are critical to the proper functioning of the system and, as such, they are created on the fly the first time the DOH tries to log into a mailbox if they are missing in the system. In the past this was checked at startup and the profile and account would be created then but in 4.0(3) this check was moved to the first time a mailbox was accessed. This turned out to be necessary since so many folks gave into the natural human instinct to destroy that which they don’t understand and would delete one or both of these items when they encountered them without realizing what they were doing. If something gets out of whack with the account and/or the profile, it’s many times as easy as deleting them and restarting the server.

In the case of Domino, the DOH uses the Notes client interface (which must be installed on each Unity server) to get at messages for subscribers and send messages of its own. The Domino Server will see Unity as a client, however the user ID we use to log in has rights to the server’s address book and the administrative request database. This allows the Unity system to log into subscribers mailbox and get at the directory (address book) information.

Resource Manager

The resource manager is used to help avoid contention for limited resources on the server. For instance the notification MWI device manager (see the notifier section below) will “ask” the resource manager is there’s an available port for doing an MWI dialout. If there is, the resource manager will reserve that port for the device manager which can then ask the arbiter to initiate the dialout. Similarly if a conversation would like to use the Text to Speech (TTS) engine to play the body of an email to a subscriber, it will reserve a TTS session from the resource manager. If there’s a session available, things proceed as normal, if not the conversation tells the subscriber to try again later. In this way no more than the licensed number of TTS sessions can ever be active at the same time.

Arbiter

The arbiter is the call “traffic cop” of the Unity system. All processes needing access to a voice port for whatever reason has to first go through the arbiter to get one. It’s the arbiter process that reads the port capability settings on the “Ports” page in the SA and enforces them. It’s also the arbiter that uses the Ruler (see next section) to handle processing the routing rules configured on the “Call Routing” page in the SA that are used for deciding where new inbound calls go in the system. The processing and debugging of these rules is covered in more detail in the Audiotext Applications In Unity 4.x document which can be found on www.CiscoUnityTools.com.

Ruler

The ruler component is used by the arbiter for evaluating the routing rules when deciding where a new inbound call goes in the system. The ruler pulls the call routing rules out of an SQL table in 3.1(3) and later, however in earlier versions of Unity these rules were stored in the Routing.RUL flat file in the \Commserver\Support directory. The arbiter passes the call information in (calling number, forwarding number, dialed number, if it’s a direct or forwarded call) and the ruler evaluates all the rules in order until it finds one that matches which it then passes back to the arbiter to take action on.

UMR

The Unity Messaging Repository interface is part of the mechanism that helps insulate Unity from volatility in the external network. Since Unity uses the Exchange or Domino message stores directly instead of using a proprietary message store and synchronizing, the availability of those mailstores affects users’ access to messages over the phone interface. The UMR is used to provide callers the ability to continue leaving messages and retrieving some voice mail messages while access to remote Exchange servers is interrupted.

Outside caller messages are delivered via the UMR process. When the message is recorded by one of the phone conversations (or “TUI Applications” in the figure above – see below) the UMR process under AvCsMgr deposits the message as a pair of files (the message itself and a routing file indicating where it needs to go) in a directory on the local hard drive. The AvUMRSyncSvr service (see below) picks these messages up and delivers them to the mailstore back end via the MAL interface of the DOH. If for whatever reason the ability to hand the message off to the Exchange or Domino back ends is interrupted, the messages remain on the local hard drive until such time as they can be delivered. While messages wait on the hard drive for delivery, the subscriber conversation can access them and let users get at messages left while connectivity to the mailstore is interrupted using a limited “UMR conversation”.

TUI Applications

Telephone User Interface Applications (or simply “conversations”) make up the user experience when interacting with Unity over the telephone. Not every conversation, however, is made up of traditional recorded prompt, voice names and greetings played to a caller. There are dozens of separate conversations used for doing everything from finding subscribers in the directory to recording messages to logging subscribers into their mailboxes.

The most visible conversations, and the ones you should care about, are the top level “routable” conversations that show up as options in the SA and other administration applications such as the Audio Text manager. For instance when you select an after greeting action that sends the caller to the operator call handler and tell it to “send to greeting” you are actually telling Unity to invoke the PHGreeting conversation with the operator call handler as a parameter. As a call moves through Unity it carries with it a handle back to the MIU (Media Interface Unit, see below) and conversations get user inputs (i.e. touch tones pressed or the call hanging up) and can request the MIU play out greetings, voice names and prompts that make up the Unity phone conversation. Each conversation that handles a call uses this same handle to check for events and request actions via the MIU. Conversations also have access to the call information via this handle which includes the calling number, forwarding number etc… that the MIU got from the phone system when the call first arrived.

The following is a list of all the routable conversations visible externally in Unity:

· PHGreeting. The Phone Handler Greeting conversation needs a call handler as an input. This conversation processes the greeting rules on a call handler and based on which rules are active, which schedule the handler is associated with, the origin of the call and the reason the call came to Unity it will select a greeting rule and execute it. Every subscriber is associated with a special call handler called a “primary call handler” and, as such, this same conversation is used to send callers to a subscriber or an audio text application call handler. See the “Unity Data Object Model” document available on the Documents page of www.CiscoUnityTools.com for more on call handlers and subscriber structures in Unity.

· PHTransfer. The Phone Handler Transfer conversation also expects a call handler, however this conversation processes the transfer, or contact rules on the handler. Depending on which transfer rules are active and the schedule the call handler is associated with this conversation will execute a transfer rule. If the transfer rule is set to not transfer at all but to go straight to the greeting for the call handler, the PHTransfer conversation will turn around and invoke the PHGreeting conversation for the same call handler. One of the more common things folks stumble on is the “entry point” into the call handler when they expect it to try and ring the phone and, instead, it goes to the greeting. This is covered in more detail in the “Audiotext Applications in Unity” document noted above.
· SubSignIn. The Subscriber Sign In conversation collects the ID and the password (if configured) of a subscriber wanting to log into their mailbox and check their messages. This conversation is similar, but not the same as the “AttemptSignIn” conversation below. Once the user is authenticated the call is then passed to the subscriber inbox conversation which allows users to access their inbox and other options configurable over the phone.

· PHInterview. The Phone Handler Interview conversation expects an interview handler to be passed to it. It will then play all the questions recorded for an interview handler and record the caller’s responses.

· AD. The Alpha Directory conversation expects a reference to a Directory Handler to be passed to it. This conversation has been around since the first version of Unity however in versions prior to 4.x there has only ever been a single, hard coded directory handler. In 4.0(1) administrators can create any number of directory handlers with different sets of users associated with each.

· AttemptSignIn. The Attempt Sign In conversation is referenced by the default routing rules for processing new incoming direct calls. This conversation will search for the calling number in the directory and if a match is found for a subscriber it will prompt the caller to enter their password if one is configured. If no match is found the conversation kicks the call back out to the arbiter which will continue down the list of routing rules looking for a match. Routing rules and how they work are covered in the “Audiotext Applications in Unity” document noted above.

· AttemptForwardToGreeting. The Attempt Forward To Greeting is also used by the default routing rules for handling new incoming calls but this rule is used for calls that forward into Unity. The forwarding number is searched in the directory for a subscriber or call handler that matches. If a match is found the call is handed to the PHGreeting conversation with the matching call handler as a parameter. Note that the PHTransfer rule is specifically not used here to prevent a “looping call” scenario where Unity transfers to a number which forwards to Unity and Unity then transfers to that number again etc. There are times when you want Unity to transfer to another number when a call forwards in, however, and techniques for dealing with that problem are covered in the “Audiotext Applications in Unity” document noted above.

· GreetingsAdministrator. This is a new routable conversation that was added in Unity 4.0. It allows administrators to setup a one key map such that they can enter a special conversation that allows them to record the greetings for call handlers over the phone interface. They have to log in as a subscriber in this conversation and it checks to make sure they are the owner (or are a member of the distribution list that’s the owner) of the call handler before letting them get at the greetings for a handler.

Log Manager

The log manager is responsible for all diagnostic and data (for reports) logging to flat files on the local Unity server as well as handling information bound for the event logs. It’s important to note that each Unity service fires up its own instance of the log manager, not just the AvCsMgr service. If there were only one instance of the log manager running under AvCsMgr all other services would have to authenticate against the gateway to gain access to it and use it which would be really inefficient. As such each service has its own log manager which I didn’t add to the 2.1 diagram to try and keep the clutter to a minimum.

At first blush this might seem like just a nerdy detail, however it has one very important ramification when you’re troubleshooting a Unity server or perhaps trying to pull information to generate a report or the like. Each service logs into its own files under \Commserver\Logs. If you go look in this directory you’ll see a series of files in there named “data_AvCsMgr_YYYYMMDD_HHMMSS.txt”, “data_AvCsDirChangeWriter_YYYYMMDD_HHMMSS.txt”, “data_AvTTSSvr_YYYYMMDD_HHMMSS.txt”, etc. Each service represented in figure 2.1 will have a data file associated with it in the logs directory. If you have traces turned on for any components you will also see “diag_*.txt” files in the same name format which includes the service name, date in [year][month][day] format and time in [hour][minute][second] format to ensure uniqueness.

This puts the onus on the technician to know, for instance, that when they turn on an MIU trace that information will show up in the “diag_AvCsMgr*.txt” file since that’s the service it runs under. On the other hand the TTS traces, which are closely related to the MIU, actually show up in the “diag_AvTTSSvr*.txt” file. This can, to put it mildly, be a bit frustrating to someone new to Unity trying to figure out what they’re looking at. The Unity Diagnostic Tool found under the Tools Depot on the desktop is designed to help pull the information you need out of the various log files for you which helps somewhat but nothing beats understanding the process.

One of the goals of this document is to help folks get a handle on which process does what and which service it runs under. If you take a quick look at the “micro traces” section of the Unity Diagnostic Tool (which can be found in the Tools Depot on the desktop) you’ll find most of the high level sections offered are represented either as a service or a component running under a service in figure 2.1. While this document is not a troubleshooting guide by any means, in several sections we will be turning on traces and reviewing their output to help folks better understand what’s going on under the covers.

One last note to make about the log manager before moving on. The keen observer will note that some components show up under more than one service such as the DOH running under AVCsMgr, CSBridgeConnector and AvUMRSyncScr. So what happens, then, when you go turn on DOH traces in the Unity Diagnostic Tool? Output from these DOH traces will show up in each of the diagnostic logs for each separate service. A little tricky but it makes sense if you consider that each service also has its own instance of the log manager so every process running under it will be logging to the file opened by that service using the log manager.

Fun Fact: The raw Diag*.txt file stamps its entries with a time from the local Unity server as you’d expect, however the Data*.txt file stamps its entries with the “system time” which is one hour earlier than GMT. There are Windows API calls to convert these times to the local time which is necessary when generating reports off these files. It was done this way to facilitate, at some point, being able to “merge” report data from multiple Unity servers into single reports.

NOTE: When viewing diagnostic files, it’s best to use the Unity Diagnostic Tool to gather the logs instead of viewing them “raw” off the hard drive. The UDT tool formats the logs and makes them more readable by adding insertion strings for hex codes that produce more human understandable output. We’ll walk through this process later when we run through a few flows and look at some diagnostic output.

Another Fun Fact: When Unity runs reports it’s pulling information out of the ReportDB database (see the “Unity Data Object Model” document noted above for more on this). The curious observer may ask how information gets from the DATA log files generated by the log manager into the ReportDB database. There’s a process called the “scavenger” that kicks of every 30 minutes and pulls relevant report data from the DATA files and stuffs them into the ReportDB tables where the reports modules can get at them. This is one of the reasons why when you make some test calls and then immediately run a report your data doesn’t show up. I’ve taken a number of questions along these lines in the past. There’s no way to force the scavenger to run immediately, you just have to hang tight until it does it’s job.

MIU

The MIU (Media Interface Unit) is responsible for interacting with the telephone switch(es) Unity is connected to. All audio, integration information, digit presses, dialouts, etc. go through this component. The MIU is a sophisticated component that can handle communicating with numerous phone systems using many different integration methods. It can also handle talking to two different phone systems at the same time on a single Unity server which is a capability unique in the industry.

TAPI (Telephone Application Programming Interface)

Prior to Unity 4.0(1) all the switch integrations Unity supported went through the TAPI interface in one way or another. Moving ahead Unity will be shifting to alternative interface mechanisms such as SIP that allow more robust and scalable solutions for switch interaction.

Integrations with traditional PBXs use Dialogic voice cards which come with a TAPI driver that sends information to and from the MIU via the Microsoft TAPI driver. Unfortunately serial data and inband DTMF information for call integrations with many PBXs is not supported by the TAPI protocol so the MIU has to do an “end run” around TAPI to get this information when necessary. This is the “integration” block under the MIU on the 2.1 diagram. Unity did, at one point, also support Natural Microsystems and, briefly, Brootrout voice cards which provided their own TSPs, however that equipment is no longer supported.

Even though Call Manager does support a native TAPI interface, Unity does not use it. Instead, we wrote a TSP (TAPI Service Provider) that talks directly to the “Skinny” interface into Call Manager which, in turn, communicates through Microsoft’s TAPI driver to and from the MIU. This was done since the Skinny interface is considerably lighter and faster than the direct TAPI interface into Call Manager since it only supports a subset of the full TAPI functionality that Unity needs.

Microsoft pushed TAPI as the greatest thing since sliced bread and pitched that it would unify the telecommunications industry into one big happy family. Short story, TAPI is dying and support for it is quickly drying up as new more flexible, faster and interesting interfaces such as SIP hit the streets. TAPI support in Unity will continue for a while, however work with Dialogic on a SIP based interface to their equipment is already well under way. For more information on the TAPI interfaces and the Microsoft telephony model it’s a part of, visit the MSDN “Telephony Overview” site here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tapi/intro_2khj.asp
Integration

For legacy PBXs that require serial or analog integration information, the MIU has to go around TAPI since the specification does not account for much in the way of custom integration information. Unity has flexible switch definition and integration instruction files that allow fairly easy and robust integrations with numerous switch types and models. Cisco TAC only supports a limited subset of the larger PBXs on the market but the thing to remember is that Unity was built on top of an integration engine that was designed to attach to just about anything that could spit out dial tone. If you have some of that Lewis and Clark spirit in you it’s possible to configure switch integration files to talk to just about anything, however this is not supported by TAC as you might suspect.

SIP (Session Initiation Protocol)

As of version 4.0(1) Unity supports SIP for communicating with phone systems. Session Initiation Protocol (SIP) is a multimedia control protocol that was designed to initiate, modify and tear-down IP sessions. Standards based, it is defined by the IETF in RFC3261, ratified in 1999 which I’m sure you are all rushing out to go read right now. A little SIP hype here:

SIP is a peer-to-peer protocol that utilizes the architecture of the WWW. This means that end-devices, called SIP User-Agents (UA), can have various levels of intelligence as well as utilize the services available within the network. SIP UAs can take various formats, including SIP Phones, SIP-based PC clients, SIP VoIP Gateways or any other device that might be contacted for a SIP session. SIP services might include device registration, call routing, call redirection, feature invocation, device notification, or various other aspects that effect a session. These services might be provided by a SIP Proxy server, SIP Redirect server, SIP Registration server, or other SIP UAs.

In addition to providing a WWW-like architecture, SIP only specifies how sessions are initiated, modified and torn-down. For additional functional, SIP utilizes existing IETF protocols such as RTP/RTCP for media, SDP for session description, MIME for message/application encoding, HTTP for message formatting and URLs for addressing. Because of this abstraction between signaling, media and application, SIP is application independent and very extensible for applications that utilize things like HTML, Email, or Instant Messaging and Presence.

The Unity Sip component talks Sip natively via a Sip Stack that was developed within the BU, based on the original Sip RFC254bis-04. It does *not* go through TAPI for call control. The Unity Sip component requires a Sip proxy for registration and call routing/forward calls into voice mail. Currently, we are only using Sip for traditional voice mail services but are pursuing other interesting applications such as presence and video messaging and a lot of other things that make sales folks’ toes curl.

Both the Skinny TSP and the Unity Sip component use AvAudio.sys (Unity wave driver) to communicate RTP for the voice media stream.

UnityAvWAV

This component sits over the WAV driver. Currently Unity supports wave drivers for the Dialogic voice boards and the VoIP protocols (Skinny and SIP). UnityAvWav provides extended services not handled by standard WAV drivers. The AGC (Automatic Gain Control) is handled here for systems not using Dialogic cards (the Dialogic drivers has it’s own AGC capabilities built in). Other features such as speed control and codec conversion (i.e. switching from 711 to 729a or back) are also done here.

Virtual Queue

The Virtual Queue is used for call holding functionality within Unity. All calls currently on hold waiting for an extension to free up are represented in the queue.

RDBSvr

The RDBSvr (Remote Database Server) component is a thin layer over the SQL data access. In short this is just a set of libraries that make finding, adding and updating information into the SQL tables easier. This served as a shim between the DOH back end and the SQL databases and as the DAL component of the DOH is phased out this, too, will retire.

TRAP Connection Server

The TRAP (Telephone Record and Playback) connection server is used to satisfy connection requests from clients wanting to use their phone to playback and record messages, greetings and voice names. The Media Master control will try and make a direct connection to the both the AvTRAPConnectionServer and the DOHMMSvr component (below) in order to playback the requested WAV file at the client desktop.

The client (SA, AA or VMO form) uses the media master ActiveX control to connect directly to the TRAP connection server to establish a phone connection to the client’s desktop. The TRAP Connection server will then take care of talking to the resource manager and the arbiter components to see if a port is available to do a media master dialout. If there are no ports available to handle this request, the client is sent an error message and the user is told at the desktop that there are not ports available and to try again later. If there is a port available, the MIU is instructed to dial out to the extension number specified in the media master configuration at the desktop and once the user picks up the phone, a media connection is established and all playback and recording of WAV files takes place over that phone connection.

One thing to keep in mind, however, is the media master ActiveX control on the clients uses DCOM (Distributed Component Object Model) to connect directly back to the Unity server from the desktop. Since DCOM does not work properly through fire walls or proxy servers, it’s difficult at best to establish media master connection (either using TRAP or just your speakers and soundcard on the local client) from outside the local intranet. Further, when using NTLM (NT LAN Management) authentication for the SA, the ActiveX control will need to authenticate a 2nd time when the client and the Unity server are in separate domains since it’s not able to “piggy back” on the NTLM challenge and response authentication the user had to supply when first accessing the page, it needs its own security token. Unity 4.0 offers an alternative to NTLM to help with sites that are not using NT as their primary network authentication mechanism or want to work around the firewall/proxy server/domain boundary issues.

DOHMMSvr

The DOH Media Master Server is used with the media master on the web client pages and the VMO form in Outlook to stream voice files. If the client is using TRAP or just their local speakers and soundcards to playback/record greetings, voice names, messages via VMO or the SA, the client needs to make a connection back to the DOH media master server to establish a stream for the WAV file in question. The client passes in the identifier of the WAV file they wish to playback or record to the media master server and the server establishes a stream handle and passes it back to the client which can then play or record the WAV file.

In the case the client is wanting to use TRAP to playback a greeting, for instance, the media master control on the SA connects to both the AVTrapSVR and the DOHMMSvr components directly via DCOM. Once a port has established a connection to the local phone the media master server is then asked to establish a stream connection to the WAV file desired over the phone connection. At this point the message is then streamed over the network to the client box and played out there.

AvWM

The Windows Monitor (or the “wedgie manager” as it’s affectionately known in house) is responsible for determining the up or down status of all Exchange servers the local Unity system cares about. In short any Exchange server that is housing one or more subscribers on the local Unity server is added to the list of systems that the windows manager “pings” every 15 seconds (in versions 3.1(3) and earlier this was every 30 seconds). If the server is off line or the Exchange directory (in the case of Exchange 5.5) or mailstore services (for both Exchange 5.5 and 2000) are not responsive then this server is marked internally as being down. When a subscriber signs into the Unity server over the phone to gain access to their messages, the conversation first checks to see if that Exchange server is up or down before attempting to log into that user’s mailbox. If it’s down, they are not allowed to attempt the log in since this can result is very long MAPI timeouts and will result in a call being stuck or “wedged” for a long period of time. If the Exchange server that you selected during the configuration setup (the “companion Exchange server” as it’s called in the documentation) is off line, then Unity goes into full “UMR Mode” and will store voice messages locally until connectivity can be reestablished.

In the case of Domino, the monitoring service here can’t assume the server is running on top of a Windows platform so things get a little trickier. It simply pings the server by name and checks for a response to make sure it’s up. It does not, however, know if the Domino services on that box are functioning properly.

Whenever a server is marked as being down or back up again, an event log message written through to the application event log. The Exchange Monitor Tool introduced for Unity 4.0 can be found in the Tools Depot and is designed to give the administrator a look at the current up/down status of all Exchange servers Unity cares about and can also be used to reconstruct the up/down status history by pulling these events from the log and putting them together into a time line. For sites having trouble with their external Exchange servers or that are experiencing severe network latency issues, this can be helpful in reconstructing Unity’s view of the network over a period of time.

AvNotificationMgr

For the Unity 4.0(3) release, the notification processes that are responsible for lightning MWIs, sending out notification emails, pages etc… based on inbox activity have been pulled out of the AvCsMgr group and into their own process here.

Notifier

What’s referred to generally as “the notifier” is actually a set of three separate components. The AvMsgStoreMonitorSvr (see below) watches all inboxes of subscribers on the local Unity server for changes and then pushes that information onto the notification queue. The notifier engine in the AvNotificationMgr process watches the queue for items it needs to react to and it, in turn, hands the request off to one of 4 “device managers” for MWIs, SMTP (text pagers), Conversations (phone notification device), or Pagers (tone pagers). Each of these device manager is responsible for sending the emails, lighting the message lamps or making the phone calls to satisfy the delivery requirements for the subscriber in question. The notifier is also responsible for kicking off the AMIS message delivery process which is covered in the Digital Networking documentation noted above.

The MWI, Conversations and Pager device managers all work with the resource manager and the arbiter components in the AvCsMgr process to initiate the dialout/MWI requests. The SMTP device manager talks directly to the DOH component to send out the emails for text pagers and the VMI notification devices. When they have failed or succeeded to carry out their notification duties they will push a message to this effect onto the notification queue to let the notifier know the request is complete one way or the other. Each notification device maintains a local queue of tasks and is responsible for handling the retries configured for that device. For instance deliveries to the home phone may be set to retry up to 4 times if the line is busy or MWIs may be configured to retry several times in the case of a serial integration. It will only mark a notification attempt as failed after exhausting all the retries configured for that device.

Later in this document when we do a call flow walk through we’ll discuss a little more how this process works and take a look at some trace output from the various components to show what’s going on under the covers.

Notification Queue

The Notification queue is, as the name implies, a simple queue of events that the notification engine watches. The AvMsgStoreMonitorSvr service (see below) is responsible for actually “watching” subscriber mailboxes for events that require the services of the notification engine and pushing those events onto the queue. The individual notification device managers mentioned above also push events onto this queue to let the notifier know if it was successful or not in satisfying the notification request.

AVMsgStoreMonitorSvr

The message monitor server service is responsible for watching all the mailboxes of all the subscribers on the local Unity server. Whenever a change of any kind happens in an inbox it’s monitoring it will push the event and the mailbox identifier on the Notification Queue in the AvNotificationMgr process (see above). The notifier, in turn, pulls that information off the queue and will then go out and filter the inbox to get a message count and decides if a notification action such as an MWI on/off or an email page or the like needs to happen.

In the case of Exchange 5.5 or Exchange 2000, the message store monitor logs into the mailbox for all subscribers homed on the local Unity server. In the case where this mailbox is off the Unity box (i.e. the Exchange server is not installed on the same box) there’s a security warning (more specifically a “success audit”) logged in the application event log since Unity is logging in using the account associated with the AvMsgStoreMonitorSvr. Exchange will log this anytime another account logs into a mailbox that’s not its own, even if it has rights to do so, this is not a message to be concerned about:

Windows 2000 User LINDBORGLABS\Administrator logged on to EAdmin@lindborglabs.thinkpad.com mailbox, and is not the primary Windows 2000 account on this mailbox.

Note that at times when Exchange is busy or too many changes take place on an inbox in too short a time (i.e. the user deletes many messages at once) Exchange can return an event that indicates we simply need to resynch the entire mailbox. In this case the notifier must go out and filter the entire inbox to know what to do. In most cases, however, it’s not necessary to filter the entire inbox, it’s possible for the notifier to determine what needs to be done specifically from the change notice the message store monitor pushes onto the queue. This makes it a little difficult to look at the diagnostics kicked out by the notifier and message store monitor components since there’s no hard and fast rule for when Exchange decides it’s “too busy” to issue a specific change request or a general “resync” notice for an inbox.

In the case of Domino, the message store monitor actually registers for changes on any inboxes it’s interested in via the DUCS (Domino Unified Communications Service) interface on each Domino server that houses one or more Unity subscribers. When any message is added, removed or modified the message store monitor is notified of this change and pushes the appropriate event onto the notification queue in the same way the Exchange message store monitor does. At startup Unity logs into each user’s mailbox and synchs, after that it’s simply a matter of adjusting as necessary based on change events for each user’s mailbox.

It’s important to note that the message store monitor itself does not determine if something needs to happen, just that a change has occurred on a mailbox it’s watching. It knows what type of action happened such as a new message was added, a message was modified (i.e. marked read) or deleted, however it doesn’t know what needs to be done for the subscriber when than action takes place. The notifier running under AvNotifierMgr must do the work to determine if anything needs to be done such as lighting an MWI light or initiating a pager dialout or the like.

Later in this document when we do a call walk-through of an outside caller leaving a message for a subscriber we’ll cover the notification process in a bit more detail and look at some of the trace output from these components.

Directory Monitor

The Directory monitor actually goes under different names depending on which back end Unity is configured for, however the functionality is the same. The directory monitor is responsible for all adds/moves/changes for all objects Unity writes to in the directory. This includes mail users (subscribers), public distribution lists, contacts (custom recipients in Exchange 5.5) and location objects. The monitor is also responsible for finding users in the directory that are not yet subscribers. The SA import and the stand alone import tools in Unity use this interface provided by the monitor called the Import Directory Connector (IDC) for allowing administrators to make standing mail users in the directory a subscriber. The directory monitor is also responsible for finding all subscribers and location objects added to the directory by other Unity servers on the network. These objects are added to the global subscriber and global locations tables in the local SQL database and are used for digital networking functionality.

Changes or deletions of subscribers and distribution lists in the directory are noted by the directory monitor and their local representations in SQL are updated by the directory change writer (see below). Unity knows an object in the directory has been changed by checking the Change ID value against its local copy in SQL. If the number is higher in the directory, a change has occurred on that record external to Unity and the directory monitor pulls in information about that object into SQL again. When a change or an add comes along in the directory, the monitor pushes that information into the Microsoft Messaging Queue (MSMQ) which is watched by the DirChangeWriter service. The DirChangeWriter then writes the change through to the local SQL tables as necessary. Later in this document when we walk through what happens when an administrator makes a change in the SA we’ll look at some of the directory monitor, directory change writer and MSMQ traces for a system using Active Directory (Exchange 2000).

It’s important to note that the directory monitor is not responsible for knowing when an item in SQL is updated and then writing that through to the directory. Currently clients that use the DOH don’t have to worry about this since the DOH writes changes through to the directory via the monitor and then updates SQL once the directory update is completed successfully. For folks that wish to be able to update SQL directly and have those changes propagate through to the directory without dealing with the DOH or updating the directory manually you need to use the SQLSynchSvr service discussed below.

The directory monitor is actually one or two services named differently depending on which directory back end Unity is connected to. Here’s a list of the service name(s) for the different back ends:

Exchange 5.5.

The directory monitor service is called “AVDSEx55”. By default the AvDSEx55 service is watching all containers from the site level down in the Exchange 5.5 site it’s installed in, however this scope can be changed to the organization level if necessary by editing the registry or going through the DOHPropTest application. This is covered in the Digital Networking documentation noted above.

Exchange 2000.

For Exchange 2000 there are actually two services with make up the directory monitor functionality. The “AvDSAD” and “AVDSGlobalCatalog”.

The AvDSAD service watches for updates to subscribers that are homed on the local Unity server. It will only monitor domains and containers that it absolutely has to since there’s no way to have AD trigger on changes to the service has to poll the directory for updates. By default this is done every 2 minutes but it’s adjustable in the registry if necessary. If a subscriber is added that’s in a new domain the service is not already watching, that domain is added to the list it is keeping an eye on. You can see a list of the domains it’s looking at in the registry under HKLM\Software\Active Voice\Directory Connectors\DirSyncAD\1.00\Domains\. Each domain will have a top level container for subscriber and distribution lists that the directory monitor is watching. This container and all its subcontainers are being polled for changes to mail user or distribution list objects. It’s possible for this root container to actually be the domain root itself. In the registry the container is actually referenced by a directory ID which is not going to tell you much, however you can also see this information in DOHPropTest under the “AD Monitor” button. It will list all the domains and for each domain a human readable container name for the root containers for mail users and distribution lists in that domain.

The AvDSGlobalCatalog service, on the other hand, watches for subscribers, distribution lists and location objects added to the directory by other Unity servers in the forest. It pulls this information in and writes it to MSMQ where the Directory Change Writer updates the global subscriber, global locations and the distribution list tables in the local SQL tables. Since it can’t know which containers or domains those Unity servers may be installed in, it has to watch the entire forest. Again, it must poll the directory for adds/moves/deletes, but since this information is much less critical than updates to local subscribers this polling interval defaults to 15 minutes. The AvDSGlobalCatalog service is always watching all containers in all domains in the entire forest, there is no way to limit its scope to a smaller subset. This service also provides the IDC interface mentioned above which is used by the import utilities to find mail users in AD that can be imported as a subscriber.

Domino

In the case of Domino, the directory service name is AvDSDomino and it works in much the same way as the other directory monitors for Exchange do. In Domino land, however, the “directory” is actually the address books that contain user information. Each Domino server has an address book and a Unity server can be configured to watch one or more address books for changes and allow imports of users in those address books. If a Unity server is handling more than one Domino server it’s necessary for the administrator to include each and every address book containing users they want to service with the Unity box in the SA.

Every minute or so the monitor will checks for changes made to the address books Unity is configured to watch since the last time it looked. Updates to users we care about are then pulled into SQL using the same mechanism. Again, any changes to a user in the address book results in a “bulk write” of all the properties in the address book Unity cares about into the local SQL subscribers table.
AVDirChangeWriter

The AVDirChangeWriter service is the same regardless of which back end Unity is connected to. All the directory monitor services write the adds/moves/deletes that need to be updated in the local SQL database to the MSMQ which the directory change writer watches. When updates are pushed onto the MSMQ, the directory change writer pulls them off and executes the update in SQL.

Note that blocks of properties for subscribers are written through to SQL even if you only change a single property on the user or distribution list in the directory. As such if you change the display name of a subscriber in AD, all properties Unity cares about for that mail user in the directory are pushed into SQL again, including the display name. Since each object in the directory only has a single change ID value the directory monitors cannot know what property changed on an object, only that it’s been updated. This also means, of course, that if you change a property Unity doesn’t care about such as the manager of a mail user, the directory monitors will still note the object has changed and will pull in all the properties for that user into MSMQ and the change writer will update SQL.

Later in this document when we do a walk through of what happens for SA and directory changes we’ll cover some of the directory change writer, directory monitor and MSMQ traces to show in more detail how this process works.

AVSQLSynchSvr

The SQL Syncronization Server service is new to Unity 4.0. This service has one job in life and that’s to walk through the mail user, locations and distribution list tables in SQL and ask the directory monitors to update the directory if necessary.

This service’s primary job in life is for the bulk import utilities including the CSV import, the FullDB Import/Export tools used to migrate from 2.x to 3.x/4.x systems and the DiRT (Disaster Recovery Tools). It is also used by the configuration setup to add the default objects to the directory (Example administrator, example subscriber, etc.). This allows applications to add users and distribution lists to SQL and then kick off the syncher to either find the corresponding user/DL in the directory and bind to it or create a new subscriber/DL in the directory as necessary.

It can also be used to update subscriber properties in SQL directly and then have the syncher talk to the directory monitor to “push” the changes for that subscriber into the directory. This allows applications to talk directly to SQL for doing the vast majority of their Unity administration tasks and then ask the syncher to make sure the directory is up to date. As such it is no longer strictly necessary to interface with the DOH components or update the various directories supported by Unity when writing administration applications for Unity.

The SQLSynchServer DLL has been around since Unity 3.0(1), however it has not been possible to call it from an off-box application. To use the SQLSyncher in 3.x it was necessary for the administration application using it to run on the same server as Unity and create an instance of the SQLSynchServer to use it. This is why applications such as DiRT, ATM (Audio Text Manager), the Import tools and others only ran on box in 3.x. In 4.0 the SQLSynchSvr service can be safely “kicked off” remotely by using an SQL stored procedure which then talks to the SQLSynchSvr service which, in turn, fires up an instance of the syncher itself to execute the updates to the directory through the directory monitors. This is a big jump forward for folks wanting to do their own interfaces into Unity using standard SQL connectivity. This process is covered in more detail in the Administering Unity Programmatically document available on the Documents page of www.CiscoUnityTools.com.

AvLic

The Licensing service has two primary rolls. It is used by the SA to determine if there are enough of a specific license to allow it to be activated on a class of service object (i.e. TTS users). When users are added to the system or moved between classes of service the totals for all the licensed features are updated and if there’s not enough of a particular license to accommodate the add/move the action is rejected by the SA. The AVLic service is also responsible for keeping the license counts up to date for the new “pooled licensing” feature in 4.x. Multiple Unity servers can share pool of licenses instead of each one having to have their own set. This is handy for large sites that require multiple Unity servers to handle the number of subscribers they need. A specific Unity server can “opt out” of the license pool if necessary and not contribute to or pull from the shared pool of licenses.

The AvLic service writes these changes into the primary location object which has new fields used to keep track of the total number of subscribers, ports and feature license counts for each Unity server. It writes these changes into SQL directly and then uses the SQLSynchSvr service noted above to have those changes written through to the directory. Other Unity servers in the directory pick up the changes to the location object and pull the updated license information into their local SQL databases. If the Unity server is participating in the pooled licenses with the Unity server that made the change it will update its local license counts accordingly.

AVRepDirSvrSvc

The Report Director Server service is responsible for launching all the reports requested via the SA and providing status updates for queued, running and completed reports that the status monitor web pages display.

The first step in the reports process actually has noting to do with the AvRepDirSvrSvc. A “scavnger” service running under AvCsMgr kicks off every 30 minutes and “scrapes” report related information from the data files in the \commserver\logs directory and stuffs it into appropriate tables in the ReportDB database. The reports engine pulls it’s data from here, not directly from the DATA files as it did in earlier versions of Unity.

Each report offered in the SA is actually a set of DLLs that generate the report in three steps. First, a DLL called the report “pump” extracts the raw information from the tables in the ReportDB database or from the UnityDB database as appropriate. Another DLL called the report “crunch” is then responsible for transforming that raw data into a temporary MDB file that the crystal reports engine can use to generate the final report. Finally a 3rd DLL uses the Crystal Reports engine to generate an HTML or CSV report from that SQL table depending on what the administrator requested when launching the report. The Report Directory Server will launch the appropriate set of DLLs for each report queued up one at a time and then keep an eye on their status which is reported in the status monitor web page. Only one report can be running at any given time, all other reports wait in line to be serviced.

The report director service runs at the lowest possible priority to avoid cutting into the main AvCsMgr service’s ability to process calls in real time. This means reports can sometimes take a while to complete, even if Unity isn’t particularly busy. Originally we tried to check how busy Unity was and based on a value generated for that adjust the priority of the reports process, however this wasn’t real smooth so it was decided to force the process to the lowest priority all the time. To help with this problem, once the report is completed the report director server sends an email to the administrator that requested the report which contains a link to the final report under the \commserver\reports share. This is handy since administrators can queue up numerous reports to run and the output will be waiting for them in their inbox when they come in the next day.

It’s important to note that any of the “pump” report DLLs that need access to the directory information, such as the subscriber report that shows the mailbox size of each mail user, goes through the gateway service and “talks” to the DOH running under AvCsMgr to get at this information. Even though reports are hard coded to the lowest possible processing priority if a subscriber report is run during heavy call traffic it will add to the load on the DOH component under AvCsMgr which is, of course, also busy processing calls on the system. The obvious solution to this is to provide a mechanism to schedule a report to run in the off hours, however Unity currently doesn’t offer this. The reports engine is slated for a major overhaul and this will be revisited then.

CSEMSSvc

The Event Monitoring Service is new for 4.0(3) and it replaces the old, much beleaguered AVGAENSvc service used for notifying administrators of event log activity.

The CSEMSSvc (Cisco Systems Event Monitoring Service) monitors the event logs for specified entries and then executes the notification rule set up by the administrators which can leave a voice mail or email in the subscriber’s inbox or directly emailing out an SMTP port to an external email server in the case that Unity is no longer able to properly communicate with the mail backend it’s connected to. The updated EMS tool has the ability to trigger notification events on specific events, entire classes of events or on any Unity related event as opposed to the old AVGAEN service which could only trigger on a list of specific events entered into its database.

Unity ships with the CSEMSSvc service not installed. Once you run the administration tool for the EMS (found in the tools depot) it will automatically install and activate the CSEMSSvc service on the fly.

If the set action when a “watched” event shows up in the event log is to send a voice mail or an email to a subscriber or a public distribution list, the CSEMSSvc uses the DOH to find the user in the directory and drop the selected message into their mailbox. To get at the DOH it authenticates with the gateway service and uses the running DOH in AvCsMgr.

This was intended as a mechanism for administrators to use for an “early warning” system when something in Unity was having a problem without requiring a full blown SNMP client or the like. In later versions of Unity SNMP triggers will be an option as a notification mechanism in the EMS tool itself among other items.

AvMMProxySvr

The AVMMProxyServer (Active Voice Media Master Proxy Server) service is used in conjunction with the new authentication method offered in Unity 4.0 that allows for media master connections across domains without requiring a 2nd authentication from the client.

As noted above in the discussion about the AVTRAPSvr and DOHMMSvr components running under AvCsMgr, clients wishing to use the media master to playback or record a greeting or voice name via a web client use the Media Master ActiveX control to connect back to the Unity server to do this. When NTLM authentication is being used the ActiveX control can connect directly to the DOHMMSvr component and, if using the phone for a media device via TRAP, also to the AvTRAPSvr component. If the user is coming from a domain different than the one Unity is running in, this will cause another authentication dialog to pop up even though the user may have already authenticated when they first fired up the SA.

Using the new Unity authentication mechanism it is not required to use NTLM any longer. However since the media master controls on the client side use DCOM which requires a security token from NT before it will allow a connection to the client, this presents a problem. To get around that problem, once Unity has authenticated the user and decide they’re OK, it uses the AvMMProxSvr service to act as a proxy which establishes a DCOM connection to the client and, in turn, gets TRAP and WAV stream handles from the DOH running under AvCsMgr which is then passed through to the client. In this way the client only has to authenticate once and does not need to be logged into an NT domain at all (i.e. Domino users) to use the SA or the new Cisco Unity Personal Assistant pages in 4.0.

AvTTSSvc

Prior to Unity 4.0(1), the AVTTSSvc service interfaced with two TTS engines: TTS3000 and the Real Speak products offered by L&H. Post 4.0(1), only RealSpeak is supported. When conversations request a TTS session to playback the text of an email to a caller over the phone, it passes the MIU a text file to play which, in turn passes it through to the TTS service which, finally, uses the 3rd party TTS vendor APIs to convert that into a WAV stream and plays it out the voice port the conversation is using.

As other TTS vendors and engines are tested and qualified, it should only be necessary to install their engines and update the TTS service to accommodate them. At the time of this writing there are other TTS engines being investigated but none are slated to be released in Unity 4.0.

CsBridgeConnector

The CSBridgeConnector service is always installed in Unity 3.1(3) and later however it’s only used if the system is using the Cisco Unity Bridge server to talk to other foreign voice mail servers via the analog OctelNet protocol.

The CSBridgeConnector is responsible for updating mail user information on the bridge server itself for both the local Unity server this service is running on and other Unity servers in the directory. Similarly it gets user information about subscriber residing on the foreign voice mail servers using OctelNet. In this way Unity subscribers can address messages to remote users via OctelNet by name or ID and get voice name confirmation back just as if they were addressing another Unity subscriber on the network.

The CsBridgeConnector gets information about adds/moves/changes to Unity subscriber by monitoring the global subscriber table in SQL. When it notices a change it pushes a small subset of information about this user (including their voice name) to the bridge server by sending it an email by going through the DOH’s MAL interface. All communication between the bridge server and the CsBridgeConnector service is done via SMTP messages like this. When the bridge server sends an SMTP message indicating an add/move/change, the CSBridgeConnector service uses the DOH to create new mail enabled contacts representing the subscribers on the foreign voice mail server or update existing ones. Going through the DOH to do this ensures that both SQL and Active Directory records are created/updated automatically. However, since the DOH does not provide an interface for deleting objects in the directory (only adding or modifying is allowed for security reasons) it has to go right to Active Directory to delete contacts when a user is removed. Since these are only contacts that cannot have message stores, the risk for deleting objects in this case is low so this work around is allowed.

The reference to Active Directory is deliberate in this case. The Bridge server only works with Unity servers running with Exchange 2000 or mixed Exchange 2000 and Exchange 5.5 systems which use Active Directory. This is currently not supported for pure Exchange 5.5 or Domino systems.

The Cisco Unity Bridge server functionality is covered in some more detail in the Digital Networking documentation for Unity 4.0(x) noted above.

AvNodeMgr

The Node Manager service is responsible for keeping a primary and secondary Unity servers up to date with one another for failover configurations. In a failover configuration the secondary Unity server is dormant but on “hot standby” ready to take over call processing and notification duties if necessary. For more information on the failover configuration and administration process, see the “Failover Guide” in the Unity documentation.

The node manager services on both the primary and the secondary Unity servers in this configuration send each other messages about the states of their services and components on their respective local servers. When the primary server fails for whatever reason (loss of connectivity to the secondary Unity, services/components becoming unresponsive, calls overflowing to the secondary server, administrator manually forcing a failover for maintenance reasons, etc.) the secondary server will take over handling calls and notification duties until the primary comes back on line and a “fail back” event is executed by the administrator.

Besides communicating service and component status back and forth between the primary and secondary servers, the node manager is also responsible for keeping selected data in the registry, the greetings and voice name WAV files synchronized between the two servers. When a new greeting is recorded for a call handler on the primary Unity server, for instance, it’s important that the updated greeting for that handler also be copied over to the secondary Unity server as quickly as possible so the systems are not out of sequence should the primary fail over. SQL Synchronization is configured between the two servers to keep the Unity databases identical between the boxes as well, however the node manager is not involved in this process directly.

TomCat

The TomCat service is responsible for generating the HTML pages for the new Cisco Unity Personal Assistant pages offered in Unity 4.0. The TomCat service uses JSP and Java Scriptlets to kick out web pages based on information pulled from the directory and mailstore via the DOH.

Currently only the Cisco Unity Personal Communication Assistant pages use this service, the SA and status monitor pages still use ASP code to generate the HTML pages as they have in previous versions of Unity. If the system administration group decides to follow the client team down the Java road is not known at this time (at least by myself). However the processes used for the SA/SM and the CUPCA page generation from a high level is actually fairly similar even if they do use different code to generate the final HTML sent back to the client.

When a client requests a CUPCA page from their desktop, the request hits IIS and, based on the URL requested, redirects it to the TomCat server running on the box. The TomCat server connects to the DOH by going through the AvXML component running under IIS and authenticating through the gateway service much like the SA uses the SADbConn component to do the same thing. It uses the DOH to get at both directory information about the requesting subscribers’ account as well as to get at the messages in their mailbox. Using this information it constructs the HTML page and sends it back to IIS which, in turn, feeds it to the requesting client’s browser.

One big difference between the CUPCA and the SA, however, is that the CUPCA will not support NTLM at all, only the new Unity authentication offered in Unity 4.0. The SA, on the other hand, can optionally support either NTLM or the new Unity authentication mechanism depending on what the customer is more comfortable with.

Process Walkthroughs

Now that we’ve covered the services Unity adds to the server and the basic components running under those services, lets walk through a couple of scenarios and see those components in action.

Outside Caller Leaves a Message

Unity uses the selected mailstore (Exchange 5.5, Exchange 2000 or Domino) as its message repository as opposed to storing messages in a local database and pushing/pulling updates in and out by polling the remote store. I’m often asked how this is done and how Unity knows to turn the MWI on or trigger a notification dialout when a new message arrives in the inbox of a subscriber either via the phone or from another subscriber from the desktop. In this section we’ll walk through the details of what happens when an outside caller forwards into Unity after dialing the extension of a subscriber’s phone and leaves a voice mail message for a subscriber which then results in a new MWI event being triggered.

For this walk through we’ll have an outside caller at 206-555-5555 call the subscriber at extension 1234 via DID. We’ll assume that their extension rang 4 times and then forwarded ring-no-answer into Unity.

[image: image3.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

Figure 2.2

In figure 2.2 we see the first step in a new inbound call where the call forwards ring no answer from extension 1234 to a hunt group of lines which includes the voice ports assigned to Unity. The Call Manager sends information about the call via the Skinny to the AvSkinnyTSP which talks to the MIU via TAPI. The MIU establishes an audio channel via the VoIP WAV driver.

The MIU now has all the information about the call including the calling number, forwarding number, the dialed number, which Unity port ID was used to handle the incoming call and the fact that the call forwarded RNA to Unity. This is all associated with the “call object” that clients further up stream have access to, including conversations (TUI applications). For some switch integrations, at this point the call has been answered already (i.e. we’ve gone off hook on the call) and an audio channel is established. For analog integrations the MIU does not get details about the call until it goes off hook and receives a stream of DTMF digits that indicate the same data the Call Manager sends via its Skinny interface. As such it’s not possible for Unity to now decide based on the call information that it’s not going to take the call and redirect, or “deflect”, the call to another number. The cow, as they say, is out of the barn and we’re going to have to handle the incoming call. In the case of a Call Manager integration, however, all the data arrives via the TSP.

This may seem like a strange detail but it can actually bite you if you’re not careful. For instance if you’re using an Analog integration (or a dual switch with Call Manager and an analog switch) and have all subscriber phones forwarding to a hunt group that includes all the Unity ports and yet some of those ports are not set to allow incoming calls, you can easily get into a situation where an inbound call is answered but cannot be handled and the user simply gets hung up on. For this reason if you are going to dedicate some ports to MWI or notification dialouts only, for instance, be sure those ports are not included in the hunt group subscriber phones are forwarded to. This also helps avoid “collisions”, a situation where Unity is attempting to go off hook to do a dialout at the same time an incoming call is trying to use that same port.

There are a very large number of MIU related traces you can turn on that show a huge array of information coming from the switch, the WAV driver, TAPI etc., far beyond the scope of document. If you’re interested in getting more details about what’s happening under the covers with the MIU, however, there is a very good and highly detailed MIU troubleshooting document that talks about the various traces you can turn on and how to read their output. If you’re interested, you can get a copy of this document here: http://www.ciscounitytools.com/Applications/DiagnosingMiu.doc
[image: image4.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

Figure 2.3

The next step is the MIU handing the new call off to the Arbiter component for initial processing. The arbiter in turn uses the ruler component to process the routing rules configured for the system to decide where this call should go. In this case we’ll assume default settings here and the “attemptForwardToGreeting” conversation gets called with the forwarding number of 1234 passed in. This extension corresponds to a subscriber so the PHGreeting conversation is evoked with the call handler for the subscriber “1234”.

In the “Audiotext Applications In Unity document” noted we take a look at the arbiter traces here that shows which routing rules are evaluated and how the inbound calls are routed. The document also take a look at the CallViewer output for troubleshooting where calls are ending up in the system and why, which is a real common challenge in the field especially for sites creating numerous complex routing rules.

[image: image5.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

Figure 2.4

Once the PHGreeting conversation is invoked with the call handler for the subscriber at extension 1234, it evaluates the greeting rules for that handler. In this case we’ll assume the subscriber has a standard greeting recorded and that the after greeting action is set to take a message which is the default behavior. The Data Object Model document noted above goes into more detail on all the parts of a subscriber, call handlers and other objects the make up the Unity directory including greeting rules, contact rules etc., mentioned throughout this document.

The PHGreeting conversation works through the MIU to play out the appropriate greeting WAV file stored under the \Commserver\StreamFiles directory. Assuming the user enters no digits during this process, the conversation then proceeds to the after message action which is set to take a message.

A quick note about full mailboxes and the Unity messaging process here. In Unity 3.1(5) and later the PHGreeting conversation can be configured to make a quick check to ensure the subscriber the message will be sent to does not have a full inbox before taking a message for that user. Since running out and checking the status of a mailbox across the network can sometimes be slow this check is off by default and can be enabled via a registry edit (see the Advanced Settings tool for this). If Unity takes a message from an outside caller for a subscriber that has a full mailbox, the UMR will end up delivering it to the mailstore which, of course, will end up rejecting its delivery to that box and will bounce the mail back to the Unity Messaging System account. The message ends up getting forwarded to the Unaddressed Messages public distribution list for handling in that case.

NOTE: The check for a full mailbox is ONLY made when messages are being left for individual subscribers by an outside caller. Subscriber to Subscriber messages are always sent via the mailstore back end regardless. If, for instance, you log in as a subscriber and send a message to another subscriber that has a full mailbox, it will be sent just as if you delivered it via an email client. The mail server will then send it back to you NDR (Non Delivery Receipt) indicating the user’s mailbox is full.

NOTE: You may wish to look at the Message Store Manager tool available for download off www.CiscoUnityTools.com. This tool can help you manage your user’s message storage usage, run reports, delete messages based on various rules such as the read status, age, urgency etc. You can read the help file and check out the training videos for the tool on it’s home page for more details.

Assuming the subscriber at extension 1234 has been good and kept their inbox to a reasonable level, the record request is sent by the PHGreeting conversation to the MIU and the caller records a message. Assuming the recording is at least 1 second long it’s considered a valid message. The MIU takes care of trimming leading and trailing silence so if the caller said nothing the silence is trimmed and the resulting recording is discarded. In some cases with PBX integrations if a user hangs up instead of recording a message and the disconnect event doesn’t come down right away, some “clicking” noise gets recorded as a message and left for the subscriber. To help with this scenario it’s possible to edit this minimum recording time on the SA under the Configuration\Recordings page, however you should exercise extreme caution if you opt to bump this value up from 1 second since it’s entirely possible for folks to leave legitimate messages that are 2 or 3 seconds long.

Once the MIU has completed recording the message by timing out on silence or the user enters a DTMF to terminate the record session, the handle to the resulting file is passed back to the conversation. In this case since the message is from an unidentified caller, the PHGreeting conversation goes through the UMR component to leave the message for the target user. If, instead, the caller had either first signed into Unity as a subscriber and then left a message or their extension had corresponded to a subscriber on the local Unity server, the PHGreeting conversation would have instead submitted the message to the DOH which would have delivered it from the sender’s mailbox directly. In this way the message is actually from the sender so the person getting the message, either over the phone or via in inbox client, can simply reply to it directly.

When the UMR process running under AvCsMgr gets the message it writes two files out to the \Commserver\UnityMTA directory. One file is the WAV file for the recorded message itself and another file is the “routing” file that indicates to the AvUMRSyncSvr service where it should ask the mail store to deliver the message when it picks it up. We’ll cover that in the next step.

[image: image6.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

By default the after message action for a call handler is to go to the “say goodbye” call handler which plays a greeting ending the call and then hangs up. Assuming this is the case here, the call then terminates and the line is freed up and is ready to take another call.

Figure 2.5

The message is not yet in the mailbox of the target subscriber at this point, its sitting as a pair of files in the \Commserver\UnityMTA directory still. When the conversation deposits the message in the UnityMTA directory it sets an event the UMRSyncSvr responds watches that has it run out and check for messages in that folder right away. If the UMRSyncSvr doesn’t get such an event within 60 seconds it’ll “wake up” and go check the folder anyway to look for messages that may have synched over from a failover server for instance. The UMRSyncSvr process uses it’s own copy of the DOH to deliver the message to the mailbox of the target subscriber using the MAL interface. In the case of Exchange the message is sent from the Unity Messaging System account which resides on the Exchange server selected during the configuration setup.

You’ll notice in the architecture diagrams that the AvUMRSyncSvr has an instance of the AvWM component running as well. It uses this service to specifically find out if the Exchange server the Unity Messaging System account resides on is currently available or not. If not, it does not attempt to deliver the messages in the UnityMTA directory, instead Unity switches into “UMR mode” and will allow subscribers to get at voice mail messages residing in the UnityMTA directory until connectivity is restored. Note that if the recipient subscriber’s home Exchange server is considered off line by the Windows Monitoring service (see above) that message will stay in the local UMR directory until that server is back on line and functioning properly. In versions of Unity prior to 3.1(5) as long as the companion Exchange server was up and running the message would be handed off to Exchange and, in this case, it would sit in the Exchange MTA until the target Exchange server came back on line. By default the MTA attempted to deliver the message every 10 minutes for 24 hours. If after that time it still could not deliver the message it returned it to the sending party NDR which, in this case, is the Unity Messaging System account we send all outside caller message from. These messages then got forwarded to the Unaddressed Messages public distribution list for handling by an administrator. Since it’s not easy to see what messages are currently stacked up in the MTA these messages would appear to end users as being “lost”. As such in Unity 3.1(5) and later the message isn’t handed off to Exchange unless both the companion Exchange server and the home Exchange server of the target subscriber are both known to be up and functioning.

To see the outside message delivery process a little better, it’s instructive to take a look at some diagnostics. For those following along at home, go ahead and open the Unity Diagnostic Tool which can be found in the Tools Depot or the Unity program group. Select “Configure Micro Traces” and go down to the “UMR” section and expand it. You’ll see a number of trace options under there, in this case we just want to see when messages are added to the UnityMTA directory and when they are picked up and delivered. Turn on trace #10 – “General UMR Sync Thread” and #12 – “MTA Walk Trough”. MTA in this case stands for Message Transfer Agent which is technically an Exchange 5.5 specific term but applies to all the mail store back ends Unity supports. Trace #12 is actually the UMR component that runs under AvCsMgr that the PHGreeting conversation talks to when submitting the outside caller message. Since it runs under the AvCsMgr process it will, of course, log its diagnostic output to the diag_AvCsMgrxxx.txt file. Once you finish the Micro Trace wizard you might want to select the “Start New Log Files” option to cycles the diagnostic trace logs which makes it easier to see what you were looking for.

Once you leave an outside caller message you can open the “diag_AvCsMgrxxx.txt” and “diag_UMRSyncSvrxxx.txt” files in the \Commserver\Logs directory directly and view the output. However the traces are more readable when they’re formatted. To do this, again use the UDT and select the “Gather Traces” option to collect the files noted above and save them in formatted output. Once formatted the file is appended with a “_fmtd.txt” extension. All trace output shown in this document is formatted.

The AvCSMgr trace file should contain the following messages:

08:14:17:375 (AvUMR_MC,152,UMR,12) MTA Directory: =C:\CommServer\unityMta\ on line 330 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\UnityMTA\AvMtaSession.cpp

08:14:17:376 (AvUMR_MC,152,UMR,12) New MTA Message file Name=C:\CommServer\unityMta\JLindborg_20020728_081417375_cbe96ed3-5245-47d0-b1ea-f67da7279c2c on line 101 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\UnityMTA\AvMtaSession.cpp

08:14:17:375 (AvUMR_MC,153,UMR,12) CAvMtaMessage::GetAudioStream() : New Message Stream on line 343 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\UnityMTA\AvMtaMessage.cpp

Couple things to note about trace output in general before moving on. The lines of code noted by components will always reference drive letters like “e:\…”. I’m often asked why since the Unity server may not have an E drive. This is actually the drive configuration of the server that stores and builds the Unity code and has nothing to do with the local Unity install. This information is really only useful to development folks that may be tracking down a problem. The first column will always contain the time/date stamp and the 6th and 7th columns will contain the trace category (UMR in this case) and the trace number that generated the output (12 in this case). This holds true for all diagnostic trace output and can be handy if you’re wanting to extract information for a specific trace from, say, the diag_AvCsMgrxxx.txt file which can contain a very large amount of output if you have any number of traces turned on.

In this case you can see the new message that arrived resulted in a file being created in the C:\Commserver\UnityMTA\ directory named “JLindborg_20020710_1819_d702ea8b-5412-4ea2-bc33-9e6c821c51ed”. There will be two files with that name in the directory, one with a .WAV file extension which is the voice message itself and one with a .TXT extension that is the routing file that the AvUMRSyncSvr service will use when addressing the message. If you want to see this you can actually just stop the AvUMRSyncSvr service and leave an outside caller message. This wont prevent Unity from running normally other than the fact that outside caller messages wont be delivered while it’s off line. If you do this and pop open the .TXT file it’ll look something like this:

RecipientAlias:JLindborg

To:

Subject:Message from an unidentified caller

Priority:1

Sensitivity:0

Date:1026351166

X-AvMailHandlerId:=?unicode?b?AQAHADAAMwA6AHsANgAxAEIAMAA2ADMANwBFAC0AQQAyADQANwAtADQAQQBFAEUALQBCADkANQAyAC0ANgAzADAAOABEADkARgA1AEIAQQA1ADUAfQAAAA==?=
The RecipientAlias field is what the UMRSyncSvr uses to address the message. If the calling number was collected from the switch and passed on the subject field would actually contain that information, in this case the calling number did not come through in the integration and so the generic “Message from an unidentified caller” is what is used by default. Currently this is not configurable (I get this question often). The priority and sensitivity fields are the same ones you have access to when sending an email using the desktop client. The AvMailHandlerID is the Unicode format for the ObjectID of the primary call handler for the subscriber (if you’re confused, hang tight until you cover the Data Object Model document available on www.CiscoUnityTools.com). When the UMR goes to send the message it actually uses this ID to find the primary call handler, then find the mail user associated with it and grabs the data from there to fill in the message send information it passes to Exchange. You can copy and paste this string into DOHPropTest’s “Find By ObjectID” dialog and it’ll translate it into a regular object ID and find the call handler for you which can be handy for running down problems here.

If you fire up the AvUMRSyncSvr service again (or you left it alone to begin with) it’ll pick up the pair of files and deliver the message to the mail store back end. As noted in the diagram above, it does this by spinning up its own instance of the DOH and delivering the message from the Unity Messaging System Account created by Unity setup. If you take a look at the diag_AvUMRSyncSvrxxx.txt file it’ll look something like this:

08:14:26:953 (AvUMR_MC,150,UMR,10) [Thread 0x00000E28] Proceeding to deliver messages from UMR on line 413 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\AvUMRSyncSvr\UMRThread.cpp

08:14:27:031 (AvUMR_MC,150,UMR,10) [Thread 0x00000E28] Message for [JLindborg] in the UMR on line 995 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\AvUMRSyncSvr\UMRThread.cpp

08:14:27:125 (AvUMR_MC,150,UMR,10) [Thread 0x00000E28] Message delivered on line 514 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\AvUMRSyncSvr\UMRThread.cpp

08:14:27:126 (AvUMR_MC,150,UMR,10) [Thread 0x00000E28] No more messages in the UMR on line 615 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\AvUMRSyncSvr\UMRThread.cpp

08:14:27:125 (AvUMR_MC,150,UMR,10) [Thread 0x00000E28] No messages in the UMR wait till we have more messages on line 339 of e:\views\Unity3.1.3.23\un_Conv3\UnityUMR\AvUMRSyncSvr\UMRThread.cpp

You can see it picked up the message bound for the subscriber with the alias of Jlindborg, then noted it delivered it and then notes that there are no more messages in the UnityMTA directory to be delivered. The last line there is just a note that it’s going to take a nap until more files arrive in the UnityMTA directory.

If for whatever reason the UMRSyncSvr service gets an error back from the mail server (for instance the RecipientAlias does not exist in its directory) when it attempts to deliver the message, the pair of files will be moved to the \Commserver\UnityMTA\Failed\ directory. It will attempt to deliver these failed messages periodically and log errors to the event log to let you know there’s a problem. In earlier versions of Unity a failed message delivery would “back up” the UnityMTA directory and nothing behind the bad message would get through. Starting in 3.1(4) the failed directory was used as a mechanism to get around this. The first step in troubleshooting such a problem is to pop open the routing .TXT file and see where it’s attempting to send the message and making sure that destination exists and is accessible. As noted above, Exchange will not issue an error if the target mailbox is full, it will simply NDR the message back to the sender. The conversations can be set to check the full mailbox condition for outside caller’s wanting to leave messages to help prevent problems here.

In the case of Domino, the full mailbox state is actually not enforced by the messaging back end as it is in Exchange. As such, Unity does not specifically warn users or prevent sending/receiving messages based on specific mailbox size restrictions. With Exchange we have no choice since the mail store will enforce it regardless. Later versions of Domino may include stricter mailbox quota enforcement and at that point Unity will need to check those limits and act accordingly.

[image: image7.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

Figure 2.6

Assuming the message is handed off to the mailstore properly in the last step and that it then delivers the message to the mailbox of the target subscriber, this is where the notifier process kicks in.

First, the AvMsgStoreMonitorSvr service is notified as soon as the message arrives with a ‘New Message” event and a message Id. It pushes this information onto the Notification queue which is running in the AvCsMgr process which requires that the AvMsgStoreMonitorSvr first authenticate with the gateway to get at the queue. The notifier then picks this information out of the queue and decides what to do with it. In this case we’ll assume subscriber 1234’s lamp is not on and there are no notification devices other than the MWI device itself active. As such, the notifier adds the MWI on request to the MWI device manager. The MWI device manager then asks the resource manager if there’s a port available to do an MWI request – it will make this same request even if the MWIs are done via the serial port or via a voice port. Assuming a port is available, the resource manager reserves it for the MWI device manager and passes the reserved port ID back which the MWI device manager then sends to the Arbiter when it requests the actual dialout to turn the lamp on. The MWI device manager will then wait until the Arbiter returns success or failure for the MWI request and if it fails, it will take care of requeing the request to try again at a specified interval for a set number of tries. It will only consider the MWI attempt failed after the total number of retries has been exhausted. Once the MWI request has either succeeded or failed it will push this result back onto the Notification Queue to let the notifier know it’s been completed. The MWI device manager also takes care of updating the subscriber’s record to indicate we think the MWI lamp is on which is what shows up on the messages page in the SA for the subscriber as the current “Indicator Lamps” status. It uses the DOH to write this through to the local SQL record, the lamp status of the subscriber is not written through to the directory so the directory monitor is not involved here.

This step covers a lot of ground, lets again turn some traces on for the components in question and walk through the output you’d see from the example scenario above. In this case we want to turn on traces for the notifier and the MWI device manager running under the AvCsMgr service. In the Unity Diagnostic Tool return to the micro traces section and in the Notifier section turn on trace #12 (MWI Device) and #21 (NotifyQ). Both these traces, of course, write out into the AvCsMgr diagnostic file since these processes run under that service. Popping open that diagnostic file you’ll see something like this:
08:14:27:937 (AvNotifier_MC,1146,Notifier,21) [Thread 0x00000DA8] NotifyQ popped eNOTIFYQ_ACTION_MSG_NEW [2], mailbox='cn=JLindborg cn=Recipients ou=First Administrative Group o=E2KDomain', arg1=2, arg2=3, arg3=1, varMessageData= (UnexpectedVariantType:8209!!).

08:14:27:938 (AvNotifier_MC,1158,Notifier,12) [Thread 0x00000DA8] Jeff Lindborg:MWI-1(1189), 1 messages (message just Added), current status Off, current attempt None

08:14:27:937 (AvNotifier_MC,1113,Notifier,12) [Thread 0x00000DA8] Queued MWI task for mailuser=Jeff Lindborg, extension=1189, status=On

08:14:27:984 (AvNotifier_MC,1108,Notifier,12) [Thread 0x00000D7C] MWI Device - MWI Entry AV_MWI_ON Received: Task Jeff Lindborg 1189 timestamp 1027869267, Port 4

08:14:30:812 (AvNotifier_MC,1146,Notifier,21) [Thread 0x00000DA8] NotifyQ popped eNOTIFYQ_ACTION_MWION_COMPLETE [7], mailbox='cn=JLindborg cn=Recipients ou=First Administrative Group o=E2KDomain', arg1=4, arg2=0, arg3=0, varMessageData='MWI-1' (VT_BSTR).

08:14:30:843 (AvNotifier_MC,1113,Notifier,12) [Thread 0x00000D7C] Completed MWI task for mailuser=Jeff Lindborg, extension=1189, status=On

The first entry is the notifer process under AvCsMgr picking up the message that the AvMsgStoreMonitor service wrote to the notifier queue when the new voice mail message arrived in the mailbox. The Notifier then takes action on that message by adding an item to the MWI device manager’s queue (the 2nd message in the trace). The MWI Device manager then issues an MWI ON event which completes and it then pushes an event back onto the notifier queue to that effect (the eNOTIFYQ_ACTION_MWION_COMPLETE message). What’s not shown in the above traces is the notifier acting on the MWI ON complete message and using the DOH to update the subscriber’s record to indicate their lamp is now on (at least so far as Unity knows).

One thing to note is that you won’t always get the specific mail store event from the message store monitor (the eNOTIFYQ_ACTION_MSG_NEW event in the first line of the diagnostic output). Sometimes if Exchange is busy or several events happen at once (i.e. multiple messages are deleted or marked read at the same time) a simple event that indicating “something changed” will come across and the notifier will need to filter the entire inbox instead of acting specifically on the message state change received. Under normal circumstances, however, the message store monitor will get a specific new\updated\deleted message notification which includes the message type.

If the above message were left on a Domino system the message monitoring traces would look a little different. The following traces are pulled from a Unity server hooked to a Domino back end. They show a new message arriving and then being read 10 minutes later:

15:45:50:094 (AvDominoMonitor_MC,1093,DominoMonitor,12) [Thread 1756] [Thread 0x000006DC] Received Notification packet from dna-test1: <notification><handlerid>unitynotifier</handlerid><applicationdata></applicationdata><user></user><database>bQBhAGkAbABcAGYAbABkADEALgBuAHMAZgA=</database><event>NewMessage</event><newmessagedata><type>V</type><priority>N</priority><sender>ZgAyAF8AbAAyAC8ARABuAGEAZABvAG0AJQBjAG8AbQAlAGMAbwBtAAA=</sender><subject>TQBlAHMAcwBhAGcAZQAgAEYAcgBvAG0AIABVAG4AaQB0AHkA</subject><id>2330</id></newmessagedata></notification>

15:45:50:093 (AvDominoMonitor_MC,1096,DominoMonitor,12) [Thread 1756] [Thread 0x000006DC] Received NewMessage Notification packet: Type:V; Prio:N; From:f2_l2/Dnadom%com%com; Subj:Message From Unity; ID:2330

15:45:52:562 (AvDominoMonitor_MC,1093,DominoMonitor,12) [Thread 1756] [Thread 0x000006DC] Received Notification packet from dna-test1: <notification><handlerid>unitynotifier</handlerid><applicationdata></applicationdata><user></user><database>bQBhAGkAbABcAGYAbABkADEALgBuAHMAZgA=</database><event>CountChange</event><countchangedata><count>2</count></countchangedata><id>2330</id><priority>N</priority><type>V</type><eventtype>1</eventtype></notification>

15:45:52:563 (AvDominoMonitor_MC,1094,DominoMonitor,12) [Thread 1756] [Thread 0x000006DC] Received CountChange Notification packet: Cnt:2; ID:2330; Prio:N; Type:V; EType:1;

16:10:18:074 (AvDominoMonitor_MC,1093,DominoMonitor,12) [Thread 1756] [Thread 0x000006DC] Received Notification packet from dna-test1: <notification><handlerid>unitynotifier</handlerid><applicationdata></applicationdata><user></user><database>bQBhAGkAbABcAGYAbABkADEALgBuAHMAZgA=</database><event>CountChange</event><countchangedata><count>1</count></countchangedata><id>2330</id><priority>2</priority><type>V</type><eventtype>6</eventtype></notification>

16:10:18:075 (AvDominoMonitor_MC,1094,DominoMonitor,12) [Thread 1756] [Thread 0x000006DC] Received CountChange Notification packet: Cnt:1; ID:2330; Prio:2; Type:V; EType:6;

Messages come in pairs – one showing the raw XML-like message coming in and a second showing what that message means to Unity. You can read through the first 4 messages there and reasonably easily tell that a new message has arrive for the user “f2_l2” (yes, those are bulk created users names… not real creative). You can see the type of “V” there which stands for voice, of course. You can also see F, E, I, R, O for Fax, E-Mail, Invitation, Report, and Other in this field. The message count noted in the 3rd and 4th entry comes after the new arrival and simply notes that there are now 2 unread voice message counts.
The deletion event (the last two entries) is simply noted as a message count state change. You can see that the count for voice mail messages is now 1. As such the notifier knows to leave the MWI on, it’ll turn it off once that count gets to 0. The count returned in the packet indicates the number of unread messages for the specified type so if the type had been “E” that would indicate the number of unread email messages which may be of interest for notification triggers setup to deliver a page, for instance, based on email messages in the inbox.

Change to Mail User in Directory

If an administrator changes, for instance, the display name of a subscriber in the directory (i.e. through Active Directory Users and Computers), how does Unity update the local SQL database to reflect that change? This is where the directory monitor services come into play. The directory monitors are watching objects in the directory for updates, additions and deletions and pushing that information into the MSMQ queue where the avDirChangeWriter service pulls from to update SQL. Lets run through a quick example.

[image: image8.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

IIS

ASP

Internet Information Server

AvSADbConn

Web Browsers

HTTP

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway

Ruler

SQL

Directory

Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvLic

AvMMProxySvr

AvXML

TomCat

(installed

by Unity)

FlexLM Libs

Files on

hard

disk

AvUMRSyncSvr

Event Log

AvCsNodeMgr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

CSBridgeConnector

AvWM

DCOM to client

AVTrapSvr

DOHMMSvr

Bridge

Server

CSEMSSvc

AvRepDirSvrSvc

AvCsTrayStatus

Cisco Unity System Administrator

Cisco Unity Assistant

Cisco Unity Status Monitor

MIU

TAPI

UnityAvWAVE

Integration

WAV Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

Legend

Cisco Unity service

Third-Party application required by Cisco Unity

Cisco Unity component

DOH

DAL

MAL

AvNotifierMgr

SMTP

MWI

Conversation

Pager

Notifier

Notification Queue

Figure 2.7

Lets say an administrator changes the display name of Jeff Lindborg who also happens to be a subscriber on the local Unity server. Lets turn on some traces and take a look at what the process looks like. In the case of Active Directory (Exchange 2000) we’ll want to watch the AvDSAD service and the AvDirChangeWriter service to see what’s changes are being noted in the directory and what the AvDirChangeWriter is actually pushing into SQL. Again, in the Unity Diagnostic Tool go to the micro traces section and in the AvDirChangeWriter section turn on #15 (All queued requests) and in the DSAD section turn on #11 (changes queued). Go ahead and make a change to the display name of a subscriber and wait 2 minutes. Remember the synch time for the avDSAD service is 2 minutes, for the AvDSADGlobalCatalog service it’s 15 minutes. You can force the sync to take place immediately using the DOHPropTest tool which is covered in more detail in the Unity Data Object Model document noted above.
What you’ll see in the AvDSAD diagnostics is very simple:

12:24:40:953,AvDirSynch_MC,1127,3652,-1,DSAD,11,AVOBJECTTYPE_MAILUSER,CN=JLindborg CN=Users DC=LindborgLabs DC=com

This is just a notation that the record for Jlindborg has changed and that the information in the directory is newer than what we have locally in SQL. This is determined through a change Id stored in the directory which we also keep track of locally. Whenever any change is made to an object in the directory, this number is incremented. If the AvDSAD service, in this case, notes that it’s newer than the number we have stored, it pushes all the information for that user that Unity cares about into the MSMQ store so it’ll be written through to SQL. The details of which values are actually being pulled from the directory can be see in the AvDirChangeWriter diagnostic output:

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,CHANGEREQ: [LogId] 392 [ReqType] AV_DIRCHANGE_MODIFY | AV_DIRCHANGE_DOMAIN_CONTROLLER [ObjType] AVOBJECTTYPE_MAILUSER [DirLogId] 423 [LocLogId] 424 [PropIdsId] 425 [PropValsId] 426

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 423 [vt] VT_BSTR [Data] 4DF880B4E68A4F4B96394F4D97B49698

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,OBJID: [LogId] 424 [Hdr] 0x00070001 [ObjType] AVOBJECTTYPE_LOCATION [ID] {FEC3952E-3119-4FAF-82E2-A6534E193635}

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [NumElems] 27

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_ADDRTYPE [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_ALIAS [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_ALTERNATE_DTMF_IDS [ExpType] VT_ARRAY | VT_VARIANT

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_AMIS_DISABLE_OUTBOUND [ExpType] VT_BOOL

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_DIRECTORY_ID [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_DISPLAY_NAME [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_DTMF_ACCESS_ID [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_RECIPIENT_EMAIL_ADDRESS [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_FIRST_NAME [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_LAST_NAME [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_LIST_IN_DIRECTORY [ExpType] VT_BOOL

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_LOCATION_OBJECT_ID [ExpType] VT_ARRAY | VT_UI1

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAIL_DATABASE [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAIL_SERVER [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAILBOX_ID [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAILBOX_SEND_LIMIT [ExpType] VT_I4

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAILBOX_SEND_RECEIVE_LIMIT [ExpType] VT_I4

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAILBOX_USE_DEFAULT_LIMITS [ExpType] VT_BOOL

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_MAILBOX_WARNING_LIMIT [ExpType] VT_I4

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_OBJECT_CHANGED_ID [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_PRIMARY_FAX_NUMBER [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_REMOTE_ADDRESS [ExpType] VT_BSTR

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_SID [ExpType] VT_ARRAY | VT_UI1

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_SID_HISTORY [ExpType] VT_ARRAY | VT_VARIANT

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_SMTP_ADDRESS [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_VOICE_NAME_DATA [ExpType] VT_ARRAY | VT_UI1

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,IDLIST: [LogId] 425 [PropId] AVP_XFER_STRING [ExpType] VT_BSTR

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_ARRAY | VT_VARIANT [Dim] 1 [ElemSize] 16 [NumElems] 27 [LBound] 0 [Data(first 32 bytes)] 08 00 00 00 00 00 00 00 84 A9 16 00 00 00 00 00 08 00 00 00 00 00 00 00 B4 3E 18 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] EX

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] JLindborg

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] 4df880b4e68a4f4b96394f4d97b49698

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] Jeff Lindborg

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] 1189

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] cn=JLindborg cn=Recipients ou=First Administrative Group o=Lindborg Labs

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] Jeff

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] Lindborg

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BOOL [Data(entire union)] FF FF 00 00 00 00 00 00

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_ARRAY | VT_UI1 [Dim] 1 [ElemSize] 1 [NumElems] 88 [LBound] 0 [Data(first 32 bytes)] 01 00 07 00 30 00 39 00 3A 00 7B 00 46 00 45 00 43 00 33 00 39 00 35 00 32 00 45 00 2D 00 33 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data(first 128 chars)] CN=Mailbox Store (BIGBOY) CN=First Storage Group CN=InformationStore CN=BIGBOY CN=Servers CN=First Administrative Group CN=Admin

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] BIGBOY

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] cn=JLindborg cn=Recipients ou=First Administrative Group o=Lindborg Labs

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BOOL [Data(entire union)] FF FF 00 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] ?

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_ARRAY | VT_UI1 [Dim] 1 [ElemSize] 1 [NumElems] 28 [LBound] 0 [Data] 01 05 00 00 00 00 00 05 15 00 00 00 57 29 02 4C E7 CB DD 7D 23 5F 63 6B 5A 0E 00 00

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] JLindborg@LindborgLabs.com

12:24:41:266,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_NULL [Data(entire union)] 00 00 00 00 00 00 00 00

12:24:41:265,AvDcw_MC,1049,3748,-1,Directory Change Writer,16,VARIANT: [LogId] 426 [vt] VT_BSTR [Data] 1189

This is a rather long section of diagnostic to include here but it’s instructive to see it in its entirety. What you’re seeing here is a list of 27 properties that are pulled in from the directory on the object that changed in the directory. They are listed twice: once with the [propID] tag which indicates which property name in the Unity object model the value maps through to and again, in the same order, with the [vt] tag which shows the actual value pulled from the directory. To find, for instance, the display name value you’ll have to look at the propID tag which is the 6th item listed. Then go to the 6th item in the vt tags and notice that the actual value is “Jeff Lindborg”. The values, meanings and locations of the constants in the propID tag list (i.e. AVP_DISPLAY_NAME) are covered more in the “Unity Data Object Model” document noted above.

Although a total of 27 properties are pulled from the directory, only a small handful of them are visible using normal administrative tools for viewing the directory. The first name, last name, display name and alias round out the list of obvious ones. Most of the information, however, is specific to Unity and is written through “hidden” values in the directory. You can see this with tools such as the ADSI editor but normally they don’t show up. Also notice that all 27 values are updated even though in this case only the display name was changed. The directory monitor has no way of knowing which property was changed in the directory, only that the object has changed in some way. It’s possible that none of the values we care about were updated, however since the change Id has rolled, the monitor will push the values through anyway.

What happens if a user is deleted in the directory entirely? In previous versions of Unity this used to present a problem because some subscriber data would still hang around unless the administrator first removed them as a subscriber in Unity before removing their record in the directory. This, of course, didn’t always happen. In Unity 3.1(x) and later, however, the directory monitor handles this. If you went ahead and then deleted the Jlindborg account out of AD, in this case, you’d see this line in the AvDSAD trace output:

12:30:42:671,AvDirSynch_MC,1127,3652,-1,DSAD,11,AVOBJECTTYPE_MAILUSER,CN=JLindborg\ DEL:b480f84d-8ae6-4b4f-9639-4f4d97b49698 CN=Deleted Objects DC=LindborgLabs DC=com

the “DEL: xxx” notation there indicates this is a deletion request. The AvDSAD then pushes the information onto the MSMQ and the AvDirChangeWriter deletes the appropriate record from the Subscriber table in the UnityDB SQL database. Triggers in SQL take care of cleaning the rest of the tables in the database of information related to that subscriber such as their call handlers, transfer rules, greeting rules etc. These structures are all covered in the “Unity Data Object Model” document available on www.CiscoUnityTools.com.

Before moving on from this topic, it’s important to note that the monitors are also pulling in information about subscribers, location objects and distribution lists that are being added/changed/deleted on other Unity servers in the directory. In the case of Active Directory this is done by the AvDSGlobalCatalog service which watches the entire forest for objects of interest. When a mail user, for instance, is found that’s “tagged” as a subscriber it pushes a very similar looking “information push” request onto MSMQ for the AvDirChangeWriter service to pick up and push into the GlobalSubscriber table in the UnityDB database in SQL. This information is used to provide the digital networking functionality which you can learn more about in the Digital Networking documentation noted above.

Administrator Updates Subscriber in SA

[image: image9.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

This flow walks through an Administrator logging in via the SA and making a change to a subscriber that then gets pushed to the directory.

Figure 2.8

The first step is the Administrator firing up the Unity SA URL from their Internet Explorer client at their desktop. The URL includes the server name of the Unity server they want to connect to. This is subtle but important. This requires DNS to be functioning properly since even if you resort to using the IP address of the server subsequent URLs generated by links from within the SA will insert the server name and, as such, the SA will not function properly.

The Unity setup registers pages for the SA, AA, Status Monitor and the new CUPCA (Cisco Unity Personal Communication Assistant) web pages with IIS on the local server. In this case the administrator is firing up the SA which is “http://servername/saweb”. If Unity is configured to use NT security (the only option for systems prior to Unity 4.0) IIS is going to ensure that the user is authenticated first. If the user is logged into the local domain or is logged into a domain that’s trusted by the local Domain, the process proceeds. If the users is not logged into a trusted domain then they will get a challenge and response login dialog before being allowed to proceed. It’s important to note that Unity is not involved in the process at all up to this point. When the Unity web pages are added to IIS during the setup process they are configured such that only authenticated users can access them, no anonymous or clear text authentication is allowed. If, on the other hand, the system is configured for the new Unity authentication method, the user will get a web page where they have to provide their login name and password stored on the local Unity server before proceeding. It’s possible to allow clients to store login name and/or password for defined periods of time on their client machines but by default this is disabled. This authentication model allows sites not using Windows NT or who are using multiple domains that don’t trust each other to more easily gain Unity client access. More details on the authentication mechanisms available for Unity 4.0 are covered in the installation guides for Unity 4.0(x) which can be found here: http://www.cisco.com/univercd/cc/td/doc/product/voice/c_unity/unity40/inst/index.htm
Once the user is authenticated, the SA then uses the AvSADbConn.DLL from the IIS process to connect to the DOH in the AvCsMgr process to see if the user has administration rights on the local Unity box. If the user resolves to a subscriber that has a Class of Service setting that allows SA access or they are “mapped” to a local user that has such rights, they are allowed to proceed. The “mapping” process is a simple matter of adding the directory ID of a domain account into a table in SQL that indicates the user has the admin rights of a local subscriber (usually the built in “installer” account created by Unity during setup). This mechanism is in place so that administrators responsible for maintaining multiple Unity servers on a network can easily gain SA access on all the boxes without having to create separate accounts added as subscribers to each to do it. The tool for adding such mappings is the “GrantUnityAccess” application which you can find in the Tools Depot applet on the Unity desktop.

Assuming the user is a subscriber that has administration access, they will see the Unity SA screen pop up and they can now go about their business. In this case lets say they go in and change the display name on a subscriber and then hit save. The SA pages again go through the AVSADBConn.dll to talk to the DOH to request the subscriber’s changes be written through. The DOH writes the changes first through to the directory via the directory monitor service and when that’s complete it writes the changes through to SQL. If the write through to the directory fails for whatever reason, the changes are not written through to SQL and the SA is passed back an error.

It’s important to note here that when the SA requests the subscriber’s information be written through, it’s all the data for that user, not just the property (display name in this case) that the administrator may have updated. The SA is not granular enough to keep track of which individual properties have been updated for a user. In much the same way that the directory monitor pulls in all data for a user in the directory that has been updated since it doesn’t know which specific property has changed, changes in the SA result in a similar block-write going back out.

Review Meeting Notes and Action Items

Review was done via email.

Email sent on: 5/10/2003

Reviewers: Murray Mar, Jane Rygg, Michael Begeman, Paola Bungaro, Alan Gatzke, Matt Penning, David Straka

People who sent feedback via email: Murray Mar, Jane Rygg, Michael Begeman

Feedback: Content update for various components sent as revision notes in document itself. Updates merged into version 5 of this document.

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

A printed version of this document is an uncontrolled copy.

Cisco Systems, Inc.
Page 11 of 47

[image: image10.wmf][image: image11.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

[image: image12.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

[image: image13.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

[image: image14.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

[image: image15.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

Tapisvr.exe

TUI application

n

TUI application 2

Cisco

CallManager

LAN

PSTN

Cisco Access

Trunk Gateway

Cisco Unity-CM

TSP

1

2

3

4

5

6

7

8

9

*

8

#

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

AvTTSSvc

Microsoft

Message Queuing

AvSQLSyncSvr

AvUMRSyncSvr

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

AVTrapSvr

DOHMMSvr

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

DOH

DAL

MAL

AvWM

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

[image: image16.wmf]AvCsMgr

Resource

Manager

Arbiter

TUI application 1

Message Store:

Exchange 5.5,

Exchange 2000, or

Domino

Directory:

Exchange 5.5,

Active Directory, or

Domino

IIS.exe

ASP

Internet Information Server

AvSADbConn

Web browsers

HTTP

TUI application

n

TUI application 2

AvCsGateway.exe

Ruler

SQL

Directory Monitor

AvDirChangeWriter

AvMsgStoreMonitorSvr

Microsoft

Message Queuing

AvSQLSyncSvr

AvMMProxySvr

AvXML

TomCat

RDBSvr

Log Manager

Data Object

Hierarchy

(DOH)

UMR

Win2K Event log and disk files

DAL

MAL

Files on hard disk

Virtual Queue

AvWM

DCOM

to client

AVTrapSvr

DOHMMSvr

AvCsTrayStatus

Cisco Unity System Administrator

Cisco Unity Assistant

Cisco Unity Status Monitor

MIU

TAPI

UnityAvWAVE

Integration

Driver

SIP

Authentication

Manager

AvNotifierMgr

MWI

Conversation

Pager

Notification Queue

SMTP

Notifier

_1122715898.vsd

_1122716081.vsd

_1122716013.vsd

_1122715717.vsd

_1122715828.vsd

_1122715865.vsd

_1122715670.vsd

