Programmatic Administration Of Unity 4.0(2) and Later

2Before You Begin This Chapter

3What We’ll Cover

3A Word about APIs and Support

5Rights you’ll need in SQL

8SQL rules of the road

8Exercises

9Finding and connecting to a Unity server on the network

9Get a list of all servers running SQL on a domain

11Deciding on a Connection Method

15Making The Connection

17Getting Version and License Info

22Find all Unity servers in the enterprise

22Listing and finding subscribers anywhere in the enterprise

25Find an extension anywhere in the dialing domain with Unity 4.0(3) or later

26Find an extension anywhere in the dialing domain with Unity 4.0(1) or 4.0(2)

31Open an SA web page directly to any object you want

32Call Handler Information Dump

38Subscriber Information Dump

41Create New Subscriber

50Import Subscriber from AD

52Edit Subscriber

56Add an alternate extension to a subscriber

58Update everyone’s “7” key rule to go directly to the opening greeting

60Update subscriber’s password

61Update the Error Greeting to Go back to itself

62Batch Subscriber Operations

65Delete Subscriber

76Remove Unity Properties from an AD object

79Adding a new public distribution list

79Removing an existing public distribution list

79Adding a member to a public distribution list

Before You Begin This Chapter

In this chapter I assume you already have a good understanding of the basic architecture and data object model for Unity. If you haven’t already done so I strongly encourage you to read the Architecture Overview and Data Object Model chapters before proceeding. It’s also a good idea to cover the Audio Text Applications chapter since that gives you some in depth coverage of how call handlers and subscribers are related and interact in the system which is important if you want to do anything beyond simply creating and deleting subscribers.

Complete working versions of all the examples we’ll cover in this chapter are available for download from the “Code Samples” page at www.CiscoUnityTools.com. These are all done in VB 6.0 projects however if you don’t have Visual Basic you can still open the forms and modules with a text editor to review them if you like. I will be reproducing only small chunks of source in this chapter, I highly recommend you get the entire sample applications and look through them. Once Unity starts shipping with the full .NET framework included on the box and, more to the point, testing is completed with those files under load, I’ll update the code samples site with some VB.NET versions of the same samples. That said, the mechanisms used here are not really language specific since they concentrate almost entirely on accessing SQL databases and using stored procedures and views which just about any language is capable of.

While you’re out on CiscoUnityTools.com I also highly recommend you get the latest version of the Cisco Unity Data Link Explorer (CUDLE) application. This tool started shipping with 4.0(1) however you’ll want to get the latest version and check back often for updates. I specifically designed this tool for use by folks developing applications against Unity’s SQL database.

[image: image1.png]~=lolx|

Fie View Options Help

Tale e =] G] Tobeinio Cotam o
Application [Columr: AtetMessageActian
stipentcaioroider 1 [Rfettessspconerion ot sl

tetteranOrecta L e

Contactfule | AfterMessageObiectldType. | Description: Action after leaving message.

Cos e Notes: The eMessagebcton fiekd can be one of:
Credential | ApplicationObject!d

DeimiDistienbestin Cabandetbpeld (T —
Deimiltfeaiorbevee CestorTne

3 et =11 [2.65t 1t ctonis a0 20e

|AfteiessageConversation and possily the

R Rowsintable: [17 JAftiMessageDbiectiD need to be fld in it vald data x|

s AftotMessagehction AfteiessageConersation | AfteessageDbiecld AftetMessageDbiectdTypel Api 2

2 PHTransler {2B55AA27 2024125 ADBS £ 85445720824)

2 PHTransfer {2B55AAZ7 2024125 ADBSE B5445720824)
2 PHTransfer {2B55AA27 2024125 ADBS £ 85445720824}

—

Information about what data is stored in the SQL database tables and columns, what’s in the registry and details on the stored procedures used for programmatic administration (including the full source for all stored procedures) are updated and added often in this tool. The built in data dictionary for SQL in particular is very useful for developers getting started with Unity and throughout I assume you have access to this for looking up what values for a particular column mean. For instance in the screen shot above the AfterMessageAction values are enumerated and explained in the “column info” tab . CUDLE also has it’s own Query Builder in it for folks that are not using the full SQL 2000 install and don’t have the SQL Query Builder at their disposal. You’ll definitely want to have one or the other handy as you work out the queries you need to pull data from the UnityDB database. One last plug for CUDLE: all the columns in all the tables are listed alphabetically which makes it much easier to find what you’re looking for. The SQL Enterprise manager, for reasons that boggle the mind, shows columns in the order in which the creation scripts add them which for large tables makes stumbling around trying to find something difficult at times. All the cool kids use CUDLE. C’mon, first time’s free.

Of course you’ll also need a running copy of Unity 4.0(1) or later. I highly encourage you to make sure you have 4.0(3) or later as some functions discussed in this chapter were not active in 4.0(1) or 4.0(2). You can download versions of Unity 4.0 off of the Cisco Software Center site. All versions of Unity include a limited “demonstration license” that will allow you to install it and test against 2 ports and up to 10 users. Record time for messages is limited to be sure it’s not used in (very small) production environments and features such as AMIS or VPIM are not active. If you need more users and a “full production test” environment you can apply for a free temporary license that will time out in 30, 60 or 90 days. Information and links for these licenses can be found on the “Links” page of www.CiscoUnityTools.com.

What We’ll Cover

There’s a lot you can do fiddling around in the database directly with Unity, of course, however we’ll be concentrating on the most necessary items in this chapter. Namely we’ll walk through how to find and connect to remote Unity servers, get necessary information off of them for report type applications, how to create, import, modify and delete subscribers as well as creating and adding new members to public distribution lists.

The vast majority of what folks ask me about is how to plug Unity into their existing provisioning systems which involves the creation, deletion and modification of subscribers in the Unity database. Surprisingly enough I don’t get a lot of requests about how to automate the construction of interview handlers. There are stored procedures for doing just that, however, and over time there will be more sample applications added to www.CiscoUnityTools.com. If you have items you’d like to see covered, be sure to ping me at the address off the web site and I’ll try and accommodate you. However in this chapter we’ll stay focused mostly on subscribers.

A Word about APIs and Support

For Unity 4.0(x) the only mechanism available for administering Unity programmatically is direct connections to the SQL database on the Unity server in question. We will be using views for reads and queries and stored procedures for updates such that folks using them will be isolated from changes to the actual data structures behind the scenes. If you don’t know what a “view” or a “stored procedure” is, you really should get yourself an introductory book on SQL before going too much further. I’ll provide enough detail for you here to stumble around if you’re not familiar with SQL, but to get the most out of this, it’s a real good idea to get some of the basics under your belt. This chapter assumes at least a beginner’s level of familiarity with SQL concepts.

My weapon of choice is Visual Basic 6 with service pack 5 using ADO to do the dirty work connecting to SQL, however you can pick whatever set of tools paints your wagon. All the code samples and projects in this chapter and on the CiscoUnityTools.com website are in VB 6 since this is primarily what I work in and the code is very easy to read. I’ve had a few C++ programmers complain that I don’t have any source code samples for them to work off of and my thought on that is if a big, strong C++ programmer can’t figure out what my simple, brute-force, well-commented VB code is doing you’ve got much larger problems to deal with in your professional life. You should be able to apply the concepts laid out here to whatever tools you prefer to use without too much trouble I’d hope since the vast majority of the logic involved is dealing directly with SQL queries and executing stored procedures which can be done in just about any language available.

Before getting too much further, it should be made clear that nothing in this chapter is supported directly by TAC. There will be no official support for remote programmatic administration of Unity in 4.0(x) either from TAC or the engineering group responsible for Unity (the Enterprise Communications Software Business Unit – ECSBU). Such support will be there for the provisioning API(s) that will be included with the next major release of Unity code named “Kubrick”. There’s no release date or committed feature set at the time of this writing so I can’t even ballpark when this will be available to the public, but I can tell you it’s being worked on. I also can’t tell you what form those provisioning API(s) will be in, but they will very likely include a SOAP type interface that essentially wraps the SQL functionality we’ll be discussing in addition to direct SQL connectivity that we’ll be working through here. There is not going to be a custom, proprietary interface provided as an API, the work will revolve around what we cover here and the logic will remain largely the same. The primary difference will be in mechanisms that allow you to attach and execute queries and procedures remotely.

That said, what’s discussed here will continue to work moving forward regardless of what other APIs and connectivity methods are provided to the public. If you’re like me, I like to get down to the real data rather than have a high level wrapper abstract it out from under me. While wrappers can make things easier in many ways and are ideal for many types of operations you need to do remotely, they can also prove to be a performance impediment and will many times lack functionality needed for a particular application. The Customer Applications Team (the fine folks that bring you most of the Unity tools you’ve come to know and love) will continue working directly with SQL for their applications for the most part and will ensure the functionality remains backwards compatible as much as possible. As long as you stick to using views when reading from the tables and use only stored procedures when adding/updating/deleting objects, any changes in the actual table structures in subsequent versions of Unity should be transparent to you.

Rights you’ll need in SQL

To connect to a Unity server from off box, the account you’re logged in as needs to have read and, if you’ll be doing updates in your application, write access to the UnityDB database. By default the SQL database installs with NT authentication only and this is what we recommend. Yes, you can setup SQL to also do it’s own authentication which allows you to pass in a login and password via your connection string, however I don’t recommend this as it’s not very secure, Relying on NT to do this for you is a much safer and much cleaner approach. While it’s your system and you can do what you want with it, just be aware you’ll risk severe disapproving looks and raised eyebrows if I catch you doing it.

The Unity server’s SQL is normally configured such that any account that’s a member of the local administrators group (or the built-in administrators group if it’s a domain controller) has full read/write access to the two Unity databases in SQL: UnityDB and ReportsDB. One easy way to deal with authentication is to create a security group in AD/NT that is added to the local administrators group on all Unity servers you want to connect to. You can then add folks who should be allowed to run your application(s) into that security group and you’re good to go. Of course you can also add individual users to the local administrators group or, if you like, take care of adding additional users or groups that have read and/or write access to UnityDB directly in the SQL administration interface.

The easiest way to do the direct add mechanism is through the SQL Enterprise Manager application. Remember that it’s OK to install this application even on systems running MSDE instead of the full SQL 2000 server. For instance on my box I created a security group called “Jeff’s Unity Access Group” and added a few accounts to it. The next step is to open the Enterprise Manager and drill down to the Security node on the server in question. Figure x.1 shows what this looks like

[image: image2.png]=lolx|

|1 Console_ Window _tieo [=L8x]
| acton yew wos || ¢ o [Em (X F B @ (%[N0, 083
Tveel Logins 5 Items.
[Console Root Neme Type Server Access
| €8 L TIM Administrators Windows Group Permit
.

58] Mirosft s servers
5@ ot server Group
5 Efy LINDEORG-SPEEDY (windows NT)
2 Datsbases
2 Dats Transformaton Sevices
2 ansgement
23 Repication
=00 seaurty
0 Loans
Server Roles
Unked servers
5 Remote Servers
22 Suppert services
ks it Services

-

€} LINDBORG-SPEEDY|Adrinistrator

(T AUTHORITYASYSTEM

indows User

indows Group
Standard

Via group membership
Permit

Figure x.1

You can, of course, add as many individual accounts or groups as you like in here. In this case I want to grant full read/write access to the UnityDB database only. On the properties page for my group’s entry I’d then select the “Database Access” tab and click only the UnityDB database and assign appropriate roles to the group. For this example I’d assign “public”, “db_datareader” and “db_datawriter” roles to that group as shown in Figure x.2.

[image: image3.png]SQL Server Login Properties - LINDBOR(

Genenl] Seve les Databaseicces |

ﬁ? ‘Speciy which databases can be accessed by this login

[Pemit_|Database [User =
@ Notthwind
© Reportdb
B0 Uriyoe

master

B mosel o

B msc

Database rols for LniyDb

[Permitn D abase ok E
€ cb_backupoperator
6 db_dtsesder
€ db _catswiter
€ b cerydatereacer
€ db cerpisamier

[Cancel Help

Figure x.2

Please note that you should NOT give any rights found on the “Server Roles” tab for this! That gives accounts the rights to create databases and edit properties in SQL Server itself which are absolutely not necessary for anything we’ll be doing with Unity.

This same task can be performed using SQL directly using the GRANT command. This allows you to get much more specific about which rights are applied to which tables within the UnityDB database and even get down to the column level. For instance this command would give my account read/write/add/delete capabilities on just the CallHandler table within UnityDB:

GRANT SELECT, INSERT, UPDATE, DELETE

ON CallHandler

TO JLindborg

However, going this route is dangerous since many of the tables reference other tables and you’d have to be sure you gave all necessary rights to all tables that were involved in the types of transactions you wanted to allow. This can be tricky at best and a never ending pit of pain at worst. I don’t recommend this method unless you really know what you’re doing and have a real good reason for getting so specific.

The method you use is up to you but one way or another the account you’re running these applications under should be granted read and, if necessary, write access on UnityDB on the Unity server(s) you need to attach to.

SQL rules of the road

You only need to remember two basic rules when dealing with the UnityDB SQL database as we move forward:

First, all read queries must use views. Do not query directly on the “raw” tables in SQL. Currently there are views for all the tables and as of 4.0(2) they’re a 1 to 1 mapping to the raw tables. However, in 4.0(3) there was a major revision in the back end that involved moving the DTMFAccessID (extension) columns out of all the tables and consolidating them into the DTMFAccessID table. The views for all the tables affected continued to expose the DTMFAccessID by referencing the DTMFAccessID table for you in the background. Folks that were going directly to the raw tables had to go back and change their code to account for this and were unhappy. I can say that for certain since I was one of those folks who wrote code for 3.x versions of Unity that didn’t have views and I didn’t bother to update all my code to use views when 4.0(x) hit the streets. Don’t be like me. If you’re going directly to the raw tables your applications may break with every new release of Unity and you’ll get real annoyed in a hurry, so don’t do that.

A quick note to all you new CUDLE users: you can switch back and forth between looking at the raw tables and views under the “options” menu using the “Use Views” and the “Use Tables” options. I highly recommend leaving it in views mode for most of what you do.

Second, all adds and updates must go through stored procedures. While it’s tempting to just flip that value onto the raw table and hit the update method, do not do this. Again, backwards compatibility as well as some basic value checking will be done within stored procedures to prevent problems with future versions of Unity breaking client applications. As you’ll see in the examples, the stored procedures are also designed to make your life easier and offer you some options that would otherwise be very tedious and error prone for you to do on your own. If you’re deleting an entire record in most cases you also want to go through a stored procedure for that. There is only one thing we’ll be covering in here where I’ll write you a note and allow you to edit information directly on the table since there is no stored procedure available at the time of this writing that updates the MessagingRule (greeting) table. The release of 4.0(4) should include that stored procedure in which case I’ll be coming around to take that note back.

Exercises

If you’re like me, the easiest way to learn something is by simply saddling up and wading through a bunch of examples. As such you may have jumped right to this section without having covered any of the previous material. As a fellow “just show me” guy I understand this, however you really need to have covered at least two earlier chapters before jumping into this. If you haven’t read the Architecture Overview and the Data Object Model chapters, please take a bit and go do that before proceeding. All the examples laid out here assume you know what is meant by having to synchronize data between SQL and the directory, how all the collections and sub collections in the database are used, how objects are linked together and the like. You will have a hard time gleaning useful information here if you haven’t got those basics under your belt first.

We’ll start with the simple connection basics, then we’ll move on to some fairly easy read only exercises to get our legs under us. Then we’ll progress to more advanced subscriber creation, import, modification and deletion scenarios later.

Finding and connecting to a Unity server on the network

The first thing we’ll need to do is figure out how to find and connect to remote Unity servers on your network. If you know the domain and server name of the Unity server you want to connect to, it’s just a matter of constructing the SQL connection string properly and you can jump ahead a few sections to “Getting Version and License Info”. If, instead, you want to make your applications capable of “browsing” the network and finding Unity servers to connect to dynamically, press ahead with me.

You can download a sample application that has a full listing of this code and includes nifty reusable modules for populating domain and server lists for you. This is the “Attaching to Unity Remotely Code” on the code samples page on www.CiscoUnityTools.com. We’ll cover the high points here.

Get a list of all servers running SQL on a domain

The easiest way to find Unity servers in a domain is to first start with the list of all servers running SQL on them. The fine folks at Microsoft were nice enough to include a snappy little WinAPI call to do just exactly this type of thing. This function pulls all the servers that are running MS SQL server (full SQL 2000, SQL 7, MSDE etc…) on them and returns them as a collection. The calling function will have to determine if Unity is installed on that box by attempting to open the UnityDB database on that server. You’ll find the full listing of this function and examples of how it’s used in the “Attaching to Unity Remotely” code sample on www.CiscoUnityTools.com. This particular function is a bit more advanced than most other items we’ll be covering since it involves dancing with the Windows API, moving chunks of memory around and dealing with pointers in VB which is not particularly trivial. If you’re a newbie, don’t freak out – just use the code chunk I provide and move on with life. For you more experienced VBers out there, this should establish some street cred’ for me before moving on.

‘This function returns a collection that includes the names of all the servers that are running SQL on them. A collection is a simple VB object that is basically a fancy way of budling up a list of items you want to iterate over without having to deal with creating an array of objects on your own. You need to pass in the name of the domain you want to look for servers in. In the full code sample I also show you how to get a list of the domains you can “see” from the server you’re running the application on.

Public Function getServers(vDomain As Variant) As Collection

Dim pszTemp As String, pszServer As String, pszDomain As String

Dim nLevel As Long, i As Long, BufPtr As Long, TempBufPtr As Long

Dim nPrefMaxLen As Long, nEntriesRead As Long, nTotalEntries As Long

Dim nServerType As Long, nResumeHandle As Long, nRes As Long

‘The SERVER_INFO_101 structure is defined in the full code listing – it’s an object that contains a number of pieces of information about a server including, of course, it’s name.

Dim ServerInfo As SERVER_INFO_101

Dim collServers As New Collection

 pszTemp = vDomain

‘The WinAPI calls to go fetch the servers we want to look at needs unicode strings to be passed in. We have to manually construct that here. VB provides a snappy little function to do just this type of thing called “StrConv”. The resulting Unicode string will be stored in the pszDomain string.

 If Len(pszTemp) = 0 Then

 pszDomain = vbNullString

 Else

 pszDomain = StrConv(pszTemp, vbUnicode)

 End If

 nLevel = 101

 BufPtr = 0

 nPrefMaxLen = &HFFFFFFFF

 nEntriesRead = 0

 nTotalEntries = 0

‘The nServerType flag tells the API call that we want to find all servers in the selected domain that are running SQL server on it. All the flags you can pass in are defined at the top of this module in the full program listing. You can also use this to find all Exchange servers, domain servers etc…

 nServerType = SV_TYPE_SQLSERVER

 nResumeHandle = 0

 pszServer = vbNullString

‘loop through all the list of servers returned and add them to the collection of server names to be returned from this function. The trick is the nEntriesRead value we pass in gets incremented each time we call it – keep looping through until the number of entries read equals the total number of entries found.

Do

nRes = NetServerEnum(pszServer, nLevel, BufPtr, nPrefMaxLen, nEntriesRead, nTotalEntries, nServerType, pszDomain, nResumeHandle)

If ((nRes = ERROR_SUCCESS) Or (nRes = ERROR_MORE_DATA)) And (nEntriesRead > 0) Then

 ‘The function actually returns the server info as a pointer to a block of memory parked somewhere. VB doesn’t deal with pointers natively so you need to use the RtlMoveMemory function to move the info from memory into the ServerInfo structure.

 TempBufPtr = BufPtr

 For i = 1 To nEntriesRead

 RtlMoveMemory ServerInfo, TempBufPtr, SIZE_SI_101

 ‘Now the server info structure contains an address in memory where a string that contains the name of the server is stored. Use the PointertoString function to go fetch the string out of there and stick it in our collection.

 collServers.Add PointerToString(ServerInfo.lpszServerName)

 TempBufPtr = TempBufPtr + SIZE_SI_101

 Next i

Else

 MsgBox “Error reading SQL servers from the domain”

 Exit Do

End If

‘free up the memory we allocated to read the SQL server info into.

NetApiBufferFree (BufPtr)

Loop While nEntriesRead < nTotalEntries

 Set getServers = collServers

 Exit Function

The calling party will get a nice collection of server name strings they can iterate over to populate list boxes, drop downs, grids or whatever here. With the server name string in hand it’s just a matter of constructing the appropriate connection string and attempting to bind to the UnityDb SQL database, if it exists, on that server. We’ll cover that next.

Deciding on a Connection Method

In all my examples here, as in most of my actual projects, I use ADO to connect to SQL. The ins and outs of using Dynamic vs. Keysets vs. ForwardOnly vs. Static recordsets and choosing between client side and server side “cursors” used by ADO here is a chapter unto itself. There are a number of good ADO books out there that you would do well to spend some time with if you plan to get into this with gusto. Here’s the very short version.

With ADO when you open a database you’re actually creating a “cursor” which is a temporary database structure on the local box your application is running on. This cursor contains the actual data from the database query you made back to the server or tables of pointers back to the rows in the server side database with the data you requested. When your application is looking for things, changing or deleting rows this is actually done on the cursor structure locally and then transmitted back to the Unity server’s database for you via the drivers under the ADO libraries you’re using on the client side here. RDO (Remote Data Objects), DAO (Data Access Objects) and other database connection libraries use similar mechanisms, ADO just happens to be the most mature, most widely supported and nicest to use in my opinion so that’s what I go with. You will catch me using DAO on rare occasions when I’m pulling in lots of info from external text files (i.e. when parsing a log file for reports). DAO has a noticeably faster “add record” capability than ADO does and this speeds things up a bit. However DAO and ADO are just different enough that you can get yourself in trouble mixing and matching here so if you’re going to go that route, definitely get yourself a good book and understand the differences.

A “client side” cursor does what it sounds like – the cursor is maintained on the local machine your client is running on and makes the necessary requests back to the server as necessary. This scales well especially for large numbers of clients doing a lot of thrashing since the minimum overhead is added back to the main server database. This is what we want when dealing with Unity since it’s real time call processing capabilities are paramount here, administrative functions are in the back seat so we want to add as little overhead to the server as we can get away with.

A “server side” cursor sends all your queries back to the server and the temporary results are generated there which can be a big performance boost for your applications but adds overhead on the server itself. This is bad, don’t do this. We’ll talk about indexing tricks you can do on your client side cursor to help speed things up a bit and since most of the types of things you’ll need to do on Unity are quick “in and out” operations such as adding, updating or deleting individual users, client side cursors are ideal.

The four recordset types are designed for different types of client-server applications. Here’s my “elevator pitch” for the reasons I used the different ADO recordset types:

· When reading in a large number of records into a bound data control such as a grid for display/lookup functions, I use adOpenForwardOnly with an AdLockReadOnly flag. This is known in the biz as a “firehose” cursor since, as you may have gathered, it’s very fast at slurping in data and passing it off. You can’t move around in this cursor, do searches or filters or anything of the kind but if you’re passing the information into another structure such as a bound grid or list control with it’s own table handling capabilities or an array or whatnot this cursor is lightning fast and is the way to go.

· Using the AdOpenKeyset flag actually populates the local cursor with pointers back to the rows in the server side database using unique identifiers, or “keys”, for the tables in question. Only a subset of the actual data for some rows are returned and it will go out and fetch the info it needs if you reference rows not in it’s local cache. When other clients make changes to the information back on the server a keyset recordset will pick that up for you when you reference it. It wont, however, pick up new rows added by other clients and when you reference a row that’s been deleted out from under you it throws an error you need to trap and handle. If you open a keyset recordset as a client side cursor, however, it behaves like an updatable static recordset which we’ll talk about in a minute. This is the recordset I use in almost all situations. Keyset and Static cursors are also the only ones that support the RecordCount property which can be handy in many situations. For instance if you search on an alias in a table you expect to get only one row back and it’s nice to be able to just make a quick check up front.

· Using the AdOpenStatic flag opens a static cursor which, as the name implies, is a static snapshot of the data that matches your query. It pulls all the data over in one shot and you can do all the things you would expect such as filtering, searching, moving forward and backwards, getting record counts and the like. It does not pick up changes made by other clients on the data in your result set and this cursor is traditionally read only, although you can force it to do updates. As noted above using the Keyset cursor on the client side behaves very similarly but it more appropriate for making updates back to the server.

· The AdOpenDynamic flag is similar to a keyset recordset except that it picks up adds and deletes on the fly and simply adjusts the recordset on the fly. Rather than only running out and updating the rows in the cursor based on keys it reissues the query back to the server and pulls over deltas. I have never had a need to use a dynamic cursor in my applications I write for Unity. You can do filters, searches, sorts and all that good stuff just as you can with Keyset recordsets, however it does not provide a snappy count of the records in the set.

Yes, some hard core DBers out there are howling about using mixed cursor types. Yes these do exist. They are evil, behave inconsistently over different providers and should be avoided. Get out of the classroom (or your mother’s basement) and go do something productive.

Since most of my applications use client side keyset recordsets it’s up to me to check for updated info on the server or new and deleted rows in the results of my query. You can use the “resync” command off the recordset object which will refresh all the rows currently in your recordset with updated info from the server’s database or you can use the “requery” method which will reexecute your original query that produced the recordset in the first place and bring over the differences (which includes removing rows that have been deleted and adding new rows that match the query). The “requery” method is by far the more useful of the two. Any changes you make to your local cursor will not be written back to the server database automatically as they would be with a server side cursor. It’s up to you to execute the “update” property on the recordset. The local cursor engine will translate your changes into “action queries” (neat term for generating some TSQL looking command strings) back to the server. In this way you can make a number of changes locally and issue one large update back to the server if you like which can be handy in some scenarios. As noted this helps keep the overhead on the server itself to a minimum which is a good thing. That said, you will only be making changes directly in your recordsets in rare cases where there is no stored procedure available to do what you need. In 4.0(3) there’s only one valid reason for that which we’ll cover later in this chapter’s examples section. All other updates should be done via calls to stored procedures.

Any recordset type can be opened with any of the read flag options (AdLockReadOnly, adLockOptimistic, adLockBatchOptimistic or adLockPessimistic). For my needs I only ever use the ReadOnly or Optimistic record locking flags. The Audio Text Manager did initially start using LockBatchOptimistic for dealing with rolling back changes until a user had “committed” them and handling nicer logging of updates and the like for which it can be very handy. However the overhead involved with keeping this model flying got too great and we simplified it to make changes to the back end immediately.

A quick word about client vs. server side recordsets and indexing. As noted above you always want to force recordsets to run on the client side when dealing with Unity to preserve as many server side CPU cycles for handling calls and other important voice server activity. Once nice thing about client side cursors is you can easily force it to build a keyed index for you which will dramatically improve lookup performance if your application is going to be doing a lot of lookups in the result set. For instance if you’re slurping in a large text file and then doing reports processing on the results, indexing your lookup keys is essential for performance. If you’re adding and reading data to tables in, say, an Access databases you’re constructing on the fly or you’ve made ahead of time you can simply mark keys for indexing in the database itself. This is what I’ve done with some of the report generation applications such as the Bridge Traffic Analyzer. If you’re constructing cursors from SQL, however, you have to explicitly tell it to index one or more columns if you want. There’s a small hit when constructing the cursor but the increase in performance when reading will more than make up for it if you’re going to be doing any kind of repeated lookups in the result set.

To force a particular column or columns to be indexed in your cursor, you need to use the “fields” type and flag each column for indexing. The following sample shows how I open some cursors in the “Port Usage Analyzer” tool:

Dim rsRawData as ADODB.Recordset

Dim f as ADODB.Field

Set rsRawData = New ADODB.Recordset

rsRawData.CursorLocation = adUseClient

rsRawData.Open "Select * from RawPortData" ORDER BY Port", strConnectionString, adOpenKeyset, adLockReadOnly

Set f = rsRawData("Port")

f.Properties("Optimize") = True

Set f = rsRawData("CallType")

f.Properties("Optimize") = True

Notice that I force the cursor type to be on the client side before opening the database. The default is for server side cursors so be sure to do this in your applications as well. Setting the “Optimize” property on the fields collection forces the cursor to create a local index table for all columns you flag that for. The difference in performance on the port data crunching was in the neighborhood of a %40 to %50 increase since it looks for rows based on their port number and the call type often in the process of creating it’s reports.

A parting word about opening recordsets in your applications. Always make an effort to keep the number of columns you ask for to a mnimum. Always using “SELECT * …” may be easy but in the case of tables with large number of columns it’ll put a real hitch in your performance get-along if you’re pulling lots of rows over as well. All that information needs to be carted over from the Unity server onto your local cursor so be sure to keep your queries tightly bound and pull over only what you need.

Making The Connection

OK, once you’ve decided on your cursor style and you have the name of a server in the domain that’s running SQL, determining if Unity is on that box is pretty straight forward. Simply try to open the UnityDB database on that server and if it succeeds you know it’s running Unity 3.0(1) or later. If it fails either it’s not running Unity or the account you’re running your application against does not have rights to connect to that box.

To actually connect (or attempt to connect) to the remote Unity server it’s just a matter of constructing the proper connection string and opening a recordset directly or a connection object depending on what you want to do. There are a lot of options in a connection string and some handy tools out there for helping you construct them to meet your needs. For my purposes I basically use two types of connection strings in my applications:

When an application is running on the local Unity server I use this simplified string:

strConnectionString = "Driver={SQL Server};server=;database=UnityDb"

And then I can open databases directly through recordsets such as this:

Dim rsSubscribers As New ADODB.Recordset

On Error GoTo Connection_Error

rsSubscribers.Open “SELECT Alias, DisplayName FROM Subscriber WHERE Alias=’Eadmin’,strConnectionString, adOpenKeyset, adLockReadOnly

<…>

For simply checking to see if we can establish a connection to a remote box it’s necessary to use a somewhat more robust connection string than the on box one we’re using above. This code chunk is from the remote connection example:

Dim cnAttempt As New ADODB.Connection

strConnectionString = "Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security Info=False;Initial Catalog=UnityDb;Data Source=" + strServerName

On Error GoTo Connection_Error

cnAttempt.Open strConnectionString

'if we're here, the connection must have completed ok

<open databases and go wild…>

Exit Sub

Connection_Error:

 Select Case Err.Number

 ' Cannot open database requested in login 'UnityDb'

 Case -2147467259

 MsgBox strServerName & " does not appear to be a Unity server or you do not have rights to log into UnityDB on that server"

 Set cnAttempt = Nothing

 Exit Sub

 Case Else

 MsgBox "Error in cmdConnect: " + Err.Description + “ code=”+str(Err.Number)

 Debug.Assert False

 Resume Next

 End Select

The error handling is the trick there. When attempting to connect to a database remotely there could be any number of reasons the connection fails. We’re specifically interested in the most common reason which is the “logon fails” error which is error reason 0x80004005 (-2147467259 decimal). This means simply the DB is not there or you don’t have rights to connect to it. Any other failure is just treated as a generic failure and reported as such.

A quick work about security here. You’ll notice that the connection string does not contain a login name or password as you may have seen in other samples. Without them the connection uses the credentials of the currently logged in user account which, as we discussed earlier in this chapter, needs to be a member of a security group that has rights to UnityDB (such as the Local Administrators group on the box) or be explicitly granted rights to the database. Using SQL authentication instead of Windows authentication and passing in a hard coded login/PW string in your connection here is not generally a good idea but it’s your server and your network so go wild.

The connection attempt should go pretty quickly here so if you wanted to hit a bunch of servers in a row and create a list you can do that. It would be a little nicer to find one Unity server and then do a query on that box to find all other servers it’s found in the directory for you, particularly if there are a lot of Unity servers on the network. Unity is already gathering such information in the background via the directory monitors anyway and you might as well leverage that work rather than repeating it yourself. We’ll cover an example of how to do that a little later.

Getting Version and License Info

The short story is there is some information you want about a Unity server that’s simply not available in the SQL database. Yes, this is annoying and it is something that is going to be addressed in later versions of Unity. If you’ve looked over the Data Object chapter earlier you’ll know quite a lot of data resides in the registry on the local Unity server. Getting at the registry on a remote box is possible but the rights issues are pretty painful. If you want to go that route, feel free. There is, however, also licensing information which is not available in SQL or in the registry and if you’re going to be adding or updating users you definitely need to have access to this. The licensing information is especially tricky since you have to deal not only with single boxes with their own set of license limits but with the new “pooled licensing” available in 4.0(1) and later where multiple Unity servers contribute and pull from a common set of license data.

Fortunately there is a mechanism that allows you to hit a URL on the Unity box in question and get an XML page back that has the most critical information about the Unity server including selected data from the registry and a full accounting of the licensing info on that box that will take pooled licenses into account as well. If you’re running a production 4.0(1) server this function won’t work for you. If you have Unity 4.0(2) installed you’ll need to apply the same files before this will work. This was a last minute thing for 4.0(2) and it wasn’t quite out of the oven by the time it shipped to production so you’ll have to run the Cisco Unity Access Library (CUAL) setup provided on the code samples page of www.CiscoUnityTools.com on the Unity servers itself and restart the TomCat service in the service control manager. You need to shut down the TomCat service, run the setup and restart the TomCat service and you’re done. Unity never has to go off line and this is a safe patch since it’s just adding an additional web page you can address, it’s not touching any core functionality in Unity. If you’re running 4.0(3) or later you’re golden as all these files are there and flying out of the box. Short story, if you’re running 4.0(2) and can’t upgrade to 4.0(3) or later, I recommend you run around and apply the setup provided for this on all your Unity servers you want to create or import users on or you want to connect to remotely.

The Remote Connection source sample provides modules that use the server name to construct the URL to hit for both licensing and server information pages provided by the CUAL setup and then shows how to parse them out. If you’re at all familiar with XML this is pretty straight forward stuff. To get at the licensing information on a particular server you construct a URL that looks like this:

http://MyUnityServer:8080/cual/CiscoUnitySystemInformation.jws?method=GetLicenseInformation
Where, of course, “MyUnityServer” is the name of the Unity server you want licensing information on. You’d typically need this if you were going to create or import a subscriber onto that box to be sure the Class of Service you’re adding the user to can take another subscriber against it. Yes, the “8080” address is necessary for this to work which can be a bit of a headache through firewalls and such but at the moment there’s no work around for this. When you hit that page in your browser, it spits back a little SOAP wrapped XML text that looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

- <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <soapenv:Body>
- <GetLicenseInformationResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <GetLicenseInformationReturn xsi:type="xsd:string"><?xml version="1.0" standalone="yes"?><AvXmlLicData> <Licenses> <LicLanguagesMax>6</LicLanguagesMax> <LicRealspeakSessionsMax>2</LicRealspeakSessionsMax> <LicSubscribersMax>100</LicSubscribersMax> <LicUMSubscribersMax>100</LicUMSubscribersMax> <LicVMISubscribersMax>100</LicVMISubscribersMax> <LicVoicePortsMax>4</LicVoicePortsMax> </Licenses> <Utilization> <AvLicUtilizationSecondaryServer>0</AvLicUtilizationSecondaryServer> <AvLicUtilizationSubscribers>51</AvLicUtilizationSubscribers> <AvLicUtilizationVMISubscribers>0</AvLicUtilizationVMISubscribers> </Utilization> <ErrorAlerts>0</ErrorAlerts> <WarningAlerts>1</WarningAlerts></AvXmlLicData></GetLicenseInformationReturn>

 </GetLicenseInformationResponse>
 </soapenv:Body>
 </soapenv:Envelope>
Short story it shows you the total counts available to that server and how many it’s using. If the Unity server in question is part of a pool of licenses, the total counts will reflect that for you. When going to add a user to that box you just need to check if the subscriber count can take one more and if the COS you’re associating the user with has VMI enabled you have to check that there’s available seats for that license and if the COS has TTS enabled you have to make sure there are TTS sessions enabled. Technically the COS shouldn’t be able to have TTS enabled if there are no TTS sessions defined but it’s possible to do this programmatically by accident so it’s proper to check.

In the dump above you can eyeball it real quick and see that it’s a 4 port system with 2 sessions of TTS, 100 subscribers with 51 used up so far. However you may (as many do) puzzle over the “<LicSubscribersMax>100</LicSubscribersMax>” and “<LicUMSubscribersMax>100</LicUMSubscribersMax>” both being in the same dump. What does this mean? Currently in Unity the licensing scheme does not allow for mixing UM and VM seats – it’s an all-or-nothing deal. Yes, I know this is annoying, you’re preaching to the choir here. However, in the above license dump that’s a UM configuration since all 100 seats are “UM enabled” which is what the two counts mean. If this had been a VM only configuration you’d see 100 LicSubscribersMax and 0 for LicUMSubscribersMax. Some day they may allow mixing licenses on the same box and you’ll see a total subscriber count and a UM count that’s a subset.
To pull out the license information is just an exercise in XML parsing which is pretty straight forward stuff using the MSXLM 3.0 libraries which we walk through for the system information section below if you want to go through the details. There’s a “checkForAvailableLicense” routine in the Remote Connection sample project that wraps things up nicely for you. All you have to pass in is the AccessTTS and AccessVMI flags on the COS you want to add the user to and it’ll return TRUE or FALSE to tell you if you can add a user to the box with that COS or not. Here’s a chunk of code showing how to use that routine.

‘First, you need to get the AccessVMI and AccessTTS columns from the row in the COS table for the class of service you’ll be adding the user to. You can pull the COSObjectID off the subscriber template you’re using to create the subscriber using this query.

 Set rsCOS = New ADODB.Recordset

 rsCOS.Open "SELECT AccessTTS, AccessVMI FROM vw_COS INNER JOIN vw_SubscriberTemplate ON vw_SubscriberTemplate.COSOBjectID=vw_COS.CosObjectID WHERE vw_SubscriberTemplate.Alias='" + strTemplateAlias+ "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If checkForAvailableLicense(strUnityServerName, rsCOS("AccessTTS"), rsCOS("AccessVMI")) = False Then

Msgbox “No licenses available for that COS, you cannot add a new user to it”

 Else

<…code to add subscriber…>

 End If

If the INNER JOIN used in the query there is new to you, it’d probably be a good idea to go fetch the “SQL Sample Queries” code example off www.CiscoUnityTools.com and spend some time walking through it. A decent book on introductory SQL queries (this is not Microsoft SQL specific by any means) would also not be a bad idea. Getting comfortable with both INNER and OUTER JOINs is critical to doing much of anything useful in a database where information about a particular object is strung across multiple tables (which describes just about any database of even medium complexity out there).

There are other pieces of information you’re going to be interested in about a Unity server other than licensing that are not available in SQL at this point. As noted above these items will find their way into SQL at some point but for now you have to ping the “GetSystemInformation” method off the same web page we get the licensing information off of to get at such things as the Unity version, what back end messaging system is being used, which messaging server we’re connected to for our “partner” server and the like. To see this info you can ping the following web address where, again, “TestBox” is the name of your Unity server:

http://TestBox:8080/cual/CiscoUnitySystemInformation.jws?method=GetSystemInformation"

The browser will show the following data when you hit that site:

 <?xml version="1.0" encoding="UTF-8" ?>

- <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
- <soapenv:Body>
- <GetSystemInformationResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <GetSystemInformationReturn xsi:type="xsd:string"><?xml version="1.0" encoding="UTF-8"?> <CiscoUnitySystemInformation><Version>4.00.01.54</Version><DirectoryType>AvDsAD.AvDsAD.1</DirectoryType><MailServer>LINDBORG-SPEEDY</MailServer><Integrations><Integration name="Cisco CallManager" number="1"/></Integrations></CiscoUnitySystemInformation></GetSystemInformationReturn>

 </GetSystemInformationResponse>
 </soapenv:Body>
 </soapenv:Envelope>
This is very similar to the licensing data above in that it has a SOAP “envelope” around some XML text. To parse out the information using the Microsoft MSXML 3.0 libraries in VB it looks like this:

 'trim off the garbage that comes at the beginning and end of the page sometimes - the XML libraries don't appreciate it even though IE doesn't seem to have a problem with it.

 strXML = removeLeadingWhitespace(GetURL(strURL, INTERNET_OPEN_TYPE_DIRECT))

‘Since the information comes in wrapped in a SOAP “envelope” you actually need to open the xmlDOC against it and then open another xmlDOC from that to get the data within the SOAP wrapper. I didn't want to require folks to have the SOAP libraries on their client machines here so I'm digging the info out of it "XML Old School" style. If you want to use SOAP libraries directly, feel free.

 xmlDoc.loadXML strXML

 If xmlDoc.parseError.errorCode <> 0 Then

MsgBox “There was a problem with the system information data from the server. This is likely caused because you have not applied the CUAL patch to your Unity 4.0(2) Unity server that you’re querying here.”

 Exit Function

 End If

‘Snag the actual XML “meat” out of the SOAP sandwich currently in the xmlDOC object.

 xmlDoc.loadXML xmlDoc.documentElement.Text

 If xmlDoc.parseError.errorCode <> 0 Then

MsgBox “There was a problem with the system information data from the server. This is likely caused because you have not applied the CUAL patch to your Unity 4.0(2) Unity server that you’re querying here.”

 Exit Function

 End If

 'Get at the information in the XML string and dump it out. In the Remote Connection code example this info is added to a dictionary and passed back to the calling routine for processing.

 MsgBox "Version: " + xmlDoc.getElementsByTagName("Version").Item(0).Text

‘The directory type can be “AvDsAD.AvDsAD.1” for Active Directory (Exchange 2000/2003), or “AvDsEx55.AvDsEx55.1” for Exchange 5.5 or “AvDsDOM.AvDsDOM.1” for Domino.
 MsgBox"DirectoryType: " xmlDoc.getElementsByTagName("DirectoryType").Item(0).Text

‘The mail server name is the partner server Unity is connected to that you selected during the setup.

 MsgBox "MailServer: ", xmlDoc.getElementsByTagName("MailServer").Item(0).Text

 'There can be more than one switch integration, as such it's a collection under the Integrations node. This output method I’m using here is rather silly and just throws up a message box for each switch found as Switch0, Switch1, Switch2 etc... Currently there are only two integrations allowed on a particular Unity but that will likely change soon.

 Set nodesInfo = xmlDoc.getElementsByTagName("Integrations").Item(0).childNodes

 iCounter = 0

 For Each nodeCurrent In nodesInfo

 MsgBox "Switch: " + Trim(Str(iCounter)), nodesInfo.Item(0).Attributes(0).Text

 iCounter = iCounter + 1

 Next

The licensing URL will remain indefinitely but as we move forward, later versions of Unity, data now stored in the registry will migrate into tables in SQL and the need to hit the Unity information URL will go away. However at the time of this writing Unity 4.0(4) still stores much of the above information in the registry.

Find all Unity servers in the enterprise

The nice thing about the design of Unity is that you only need to connect to one Unity server in the directory and it’ll have all information about other Unity servers and subscribers you need to find and connect to them. The directory monitors have done all the heavy lifting for you here and you can exploit it easily.

As discussed in the Architectural Overview and the Data Object Model chapters, information about remote Unity servers and remote subscribers homed on those servers can be found in the global location and global subscriber tables in UnityDB. If the other Unity server is in the same directory, information about it and it’s subscribers will be available to you.

In this case we just want to get a full list of all “visible” Unity servers on the network. Once you have your connection string constructed as described earlier, you simply need to open a recordset using this query:

rsUnityServers.Open “SELECT HomeServer FROM vw_Location_Global GROUP BY HomeServer”, strConnectionString, adOpenKeyset, adLockReadOnly

The rsUnityServers recordset now includes a complete list of all Unity server names visible on the network. Yes, there is another “HomeServer” column in the subscriber table that throws some folks off. The HomeServer value in the subscriber table is the server name of the mail store server the subscriber’s mailbox is homed on, not their home Unity server. The wisdom of using the same column name for two different concepts like that is left as an exercise for the reader.

Listing and finding subscribers anywhere in the enterprise

In much the same way information about remote Unity servers can be found in the global location table, information about remote Unity subscribers can be found in the global subscriber table. As we discussed extensively in the Data Object Model chapter, there’s a lot of information about a subscriber that doesn’t get replicated around the directory such as most of the data associated with their primary call handler. For a complete run down on what info we have on remote subscribers, whip open your copy of CUDLE and look through the columns for the GlobalSubscriber table.

For the first part of this example we’re going to generate one table that includes the alias, first name, last name, display name, primary extension and home Unity server for each subscriber in the directory.

SELECT vw_Subscriber_Global.Alias, vw_Subscriber_Global.DisplayName, vw_Subscriber_Global.FirstName, vw_Subscriber_Global.LastName, vw_Subscriber_Global.DTMFAccessID AS 'Primary Extension', vw_Location_Global.HomeServer

FROM vw_Subscriber_Global INNER JOIN vw_Location_Global

ON vw_Subscriber_Global.LocationObjectID=vw_Location_Global.LocationObjectID

WHERE vw_Subscriber_Global.SubscriberType NOT IN (0,6)

Since the home Unity server name is stored in the global location table we need to do an inner join here to get at it. The subscriberType filter in the WHERE clause specifically excludes the special built in installer account (type 6) and the Unity Messaging System account (type 0) which are not Unity subscribers but special objects used internally. As such the resulting recordset contains information about all subscribers including full Exchange and Domino subscribers as well as internet subscribers (AMIS, SMTP, Bridge and VPIM users). If you want to filter out all but full subscribers you could replace that with “WHERE vw_Subscriber_Global.SubscriberType IN (1,3)” for instance. Again, check CUDLE for the SubscriberType column and you’ll get a full run down on what all the legal values for this column are and what they mean.

If you want to find all the subscribers in the directory that are on Unity servers in the same dialing domain, this is easily done by adding another simple JOIN clause into the query. Dialing domains are defined as all primary location objects that have a matching DialingDomainName string associated with them. As such adjusting the query to look like this:

SELECT vw_Subscriber_Global.Alias, vw_Subscriber_Global.DisplayName, vw_Subscriber_Global.FirstName, vw_Subscriber_Global.LastName, vw_Subscriber_Global.DTMFAccessID AS 'Primary Extension', vw_Location_Global.HomeServer

FROM vw_Subscriber_Global INNER JOIN vw_Location_Global

ON vw_Subscriber_Global.LocationObjectID=vw_Location_Global.LocationObjectID

INNER JOIN vw_Location

ON vw_Location.DialingDomainName=vw_Location_Global.DialingDomainName

WHERE vw_Subscriber_Global.SubscriberType NOT IN (0,6) and vw_Location.Alias=’default’

The location alias of ‘default’ is a handy way of grabbing the local primary location which is where the dilaing domain name is stored. This query will grab all the Unity subscribers homed on any Unity server that’s in the same dialing domain as the Unity server you’re attached to when running the query. Remember that if the Unity server you’re attached to is not part of a dialing domain, the resulting recordset will contain no members because the DialingDomainName column for the local location is NULL and in SQL land NULL <> NULL and so there will be no matching rows. To deal with this you can explicitly check for “IsNull(vw_Location.DialingDomainName)” and execute an appropriate query.

To get a list of all the dialing domains in the directory is similar to getting all the server names:

SELECT DialingDomainName FROM vw_Location_Global GROUP BY DialingDomainName

You could take this subscriber recordset you created above and bind it to a grid control and have yourself a pretty decent subscriber browser for very little work. You can easily throw a tree control on there to adjust the query to include users only homed on specific Unity servers or servers within a dialing domain. Combine this with the ability to directly open a subscriber’s SA page off their home Unity server discussed in the next section and you’re on your way to making your very own Global Subscriber Manager.

While we’re rummaging around in the global subscriber and global location tables to find information about remote users, there are a couple common problems that come up when dealing with the enterprise level directory we can solve easily. First, if you have a user in your directory it’s good to know which Unity server they live on such that you can launch their SA page directory or you know which Unity server you need to attach to so you can update their information or delete them or what have you. Assuming you have their mail alias from the directory to start with, this is easily solved with a simple query on our good friends the global tables:

SELECT vw_Subscriber_Global.DisplayName, vw_Location_Global.HomeServer

FROM vw_Subscriber_Global INNER JOIN vw_Location_Global

ON vw_Subscriber_Global.LocationObjectID=vw_Location_Global.LocationObjectID

WHERE vw_Subscriber_Global.Alias='jlindborg'

It gets a little trickier to find someone from their extension number. The primary extension number of a subscriber is stored in the global subscriber table which is easy enough to deal with using the view (remember this column was removed in 4.0(3) in the raw table). However subscribers can have up to 9 alternate extensions and you can’t be certain which one the user may be looking for. For this you have to add a join to the DTMFAccessID table itself. As information about remote Unity subscribers is pulled into the database, the directory monitor unpacks the alternate extension number “blob” that’s added to the subscriber’s directory object and puts the resulting values into the DTMFAccessID table.

If the extension of the user you were looking for was “4321” the query would look like this:

SELECT vw_Subscriber_Global.DisplayName, vw_Location_Global.HomeServer

FROM vw_Subscriber_Global INNER JOIN vw_Location_Global

ON vw_Subscriber_Global.LocationObjectID=vw_Location_Global.LocationObjectID

INNER JOIN vw_DTMFAccessID

ON vw_DTMFAccessID.ParentObjectID=vw_Subscriber_Global.SubscriberObjectID

WHERE vw_DTMFAccessID.DTMFAccessID='4321'

Be aware that it’s perfectly legal for the above query to return more than one match. The global subscriber table will include users from all over the directory, not just those in a dialing domain. As such it’s possible for there to be overlapping numbering plans in the corporate directory. You can include restrictions in your query for only getting users in a particular dialing domain or you can just present a list of display names and aliases and let the user running your application make a smart decision.

Find an extension anywhere in the dialing domain with Unity 4.0(3) or later

In the previous section we talked about how to find the extension of a subscriber anywhere in the directory. However sometimes you just want to find any and all objects using a particular extension number in the dialing domain. This can include local objects such as call handlers, interview handlers and name lookup handlers. It can include global objects like distribution lists, location objects and, of course, subscribers in the dialing domain.

You’ll need to make such a check any time you want to add a new object with an extension defined or edit a standing object’s extension to be sure you don’t introduce a conflict in the dialing domain. The Unity conversation assumes that all extensions across all objects are unique in the dialing domain and you’ll get “undefined behavior” as they say if you don’t take care to avoid such conflicts.

For Unity 4.0(3) a new view was added that greatly simplifies this process which is why I include two separate sections for how to do this. The following code chunk grabs a new extension number off the txtNewExtension text control on the form and checks to be sure the extension in there doesn’t conflict with anything in the dialing domain. Checks on the validity of the text in the edit box has been done further up stream, this just shows the mechanism for reporting conflicts to the user in a reasonable way.

 rsTemp.Open "SELECT * FROM vw_DTMFaccessID_DialingDomain WHERE DTMFAccessID='" + txtNewExtension.Text + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount > 0 Then

 'conflict found in the dialing domain – report this to the user. Technically there should only ever be one but it’s possible the site has other conflicts that pre exist so iterate through the recordset and produce a message box that list all conflicts found, what object.

 strTemp = "That extension cannot be used since it conflicts with the following objects in the dialing domain: "

 rsTemp.MoveFirst

 Do While rsTemp.EOF = False

 strTemp = strTemp + "Extension= " + rsTemp("DTMFAccessID") + " is owned by " + strGetObjectTypeDescription(rsTemp("ObjectType")) + " with a Display Name= " + rsTemp("DisplayName") + ". "

 rsTemp.MoveNext

 Loop

 MsgBox strTemp

 End If

The strGetObjectTypeDescription function used there is a simple case statement that translates the ObjectType number into a readable string. As always, a quick trip to CUDLE will show the list of values possible here, but here’s the listing for that function so you know what’s going on here – nothing too complicated.

Public Function strGetObjectTypeDescription(iObjectType As Integer) As String

Dim strTemp As String

 Select Case iObjectType

 Case 1

 strTemp = "Subscriber"

 Case 2

 strTemp = "Distribution List"

 Case 3

 strTemp = "Call Handler"

 Case 5

 strTemp = "Inteview Handler"

 Case 6

 strTemp = "Directory Handler"

 Case 9

 strTemp = "Location Object"

 Case Else

 strTemp = "Unknown"

 End Select

 strGetObjectTypeDescription = strTemp

 Exit Function

End Function

That’s it, you’re done. Piece of cake. It’s party time.

Find an extension anywhere in the dialing domain with Unity 4.0(1) or 4.0(2)

If you’re running 4.0(1) or 4.0(2) and you simply can’t upgrade to 4.0(3) or later, you’ll need to do this check “old school”. Finding the ID you want and getting the information about that object can be a little tricky since you’ll have to check multiple places with a partty gnarly query. It also requires you know what all the ParentObjectIDType values in the DTMFAccessID table actually mean. A quick trip to CUDLE will get you a list of all 6 values we care about in this situation (the same ones we use in the CASE statement in the previous section):

1 = Subscribers

2 = Public Distribution Lists

3 = Call Handlers

5 = Interview Handlers

6 = Directory Handlers (name lookup handlers)

9 = Location Objects

Call handlers, interview handlers and directory handlers are local to the Unity server they are created on so finding them is pretty straight forward stuff. Locations can span dialing domains and, as such, their Ids need to be unique across all Unity servers that are in their dialing domain. Subscribers also span dialing domains but include alternate extensions and so require special consideration. Distribution lists are global all the time which can introduce special problems in a directory that spans dial plans.

Fortunately all you have to worry about is checking the DTMFAccessID table which consolidates all the extensions, both local and global, in one place to make such checks fairly easy. However if you want to construct a decent looking list of display names and basic object information to display to the user should a conflict arise, there’s a little more work involved.

The first check we’ll do here is against all subscribers in the dialing domain. We need to be careful here since if the Unity server we’re connected to is not part of any dialing domain, the DialingDomainName value will be NULL. If the value is NULL then you can just check against the local subscriber table instead of doing an inner join against the global subscriber and global locations table as you would normally.

First, get the dialing domain name the local box is in, if any.

Rstemp.open “SELECT DialingDomainName FROM vw_Location WHERE vw_Location.Alias=’default’”,strConnectionString, adOpenKeyset, adLockReadOnly

If IsNull(rsTemp(“DialingDomainName”)) then

StrDialingDomainName=vbNullString

Else

StrDialingDomainName=rsTemp(“DialingDomainName”)

EndIf

RsTemp.Close

If len(strDialingDomainName)=0 Then

 strSQL = "SELECT vw_DTMFAccessID.DTMFAccessID, vw_Subscriber.Alias, vw_Subscriber.DisplayName FROM vw_DTMFAccessID INNER JOIN vw_Subscriber ON vw_DTMFAccessID.ParentObjectID=vw_Subscriber.SubscriberObjectID WHERE vw_Subscriber.SubscriberType NOT IN (0,6) AND vw_DTMFAccessID.DTMFAccessid='" + strDTMFID + "'"

 Else

 strSQL = "SELECT vw_DTMFAccessID.DTMFAccessID, vw_Subscriber_Global.Alias, vw_Subscriber_Global.DisplayName, vw_Location_Global.HomeServer FROM vw_DTMFAccessID INNER JOIN vw_Subscriber_Global ON vw_DTMFAccessID.ParentObjectId=vw_Subscriber_Global.SubscriberObjectId INNER JOIN vw_Location_Global ON vw_Location_Global.LocationObjectId=vw_Subscriber_Global.LocationObjectId WHERE vw_Subscriber_Global.SubscriberType NOT IN (0,6) AND vw_Location_Global.DialingDomainName='" + strDialingDomain + "' AND vw_DTMFAccessID.DTMFAccessid='" + strDTMFID + "'"

 End If

 rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount > 1 Then

<…code to report conflicting subscribers to user…>

 End If

The rsTemp recordset would contain all subscribers in the dialing domain that had a primary or alternate ID that conflicted with the ID you passed into the routine. If the server was not a member of any dialing domain the result set would just contain local subscribers. If there was one or more matches then you’d have to present an error to the user indicating they can’t use the ID they’ve selected for a new object or for updating the extension of an existing object. You can do this by constructing a dictionary or an array of structures or whatever paints your wagon. The structure would contain the information such that you could display a decent error message indicating which subscriber on what server was causing the conflict.

Next the routine would need to check location objects which optionally have Ids as well.

If Len (strDialingDomainName)=0 then

 StrSQL=”SELECT vw_Location_Global.TextName, vw_Location_Global.Alias, vw_DTMFAccessID.DTMFAccessID

FROM vw_Location_Global INNER JOIN vw_DTMFAccessID

ON vw_Location_Global.LocationObjectID=vw_DTMFAccessID.ParentObjectId

WHERE vw_DTMFAccessID.DTMFAccessid='" + strDTMFID + "'"

Else

 StrSQL=”SELECT vw_Location_Global.TextName, vw_Location_Global.Alias, vw_DTMFAccessID.DTMFAccessID

FROM vw_Location_Global INNER JOIN vw_DTMFAccessID

ON vw_Location_Global.LocationObjectID=vw_DTMFAccessID.ParentObjectID

WHERE vw_Location_Global.DialingDomainName=’”+strDialingDomainName+”’ AND vw_DTMFAccessID.DTMFAccessID=’”+strDTMFID+”’”

EndIf

 rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount > 1 Then

<…code to report conflicting subscribers to user…>

 End If

 RsTemp.Close

Now the structure that you’re adding to for all potential conflicts will contain all subscribers and distribution lists in the dialing domain (if any) the local Unity server is a part of. The last thing you need to do is check all objects that remain. Public distribution lists are “shared” objects and can as such be considered local to all Unity servers. This concept is a little tricky for folks sometimes. The short story is if you assign an ID to a public distribution list, that ID is used by ALL Unity servers in the entire corporate directory. This is a common source of ID conflicts folks run into. As a general rule don’t assign Ids to public distribution lists unless you’re sure you have a coordinated dialing plan across your network.

To do this grab all objects referenced in the DTMFAccessID table that are not subscribers or location objects that are using the ID in question. By definition these are all the “local” objects and any ID to be used by any other object on this server should not conflict with these Ids. Iterate over the list of objects found (if any) and add descriptive information about each object (i.e. it’s type, it’s display name and alias at a minimum) into the structure you’re using to pass this data back to the calling party. The following code chunk is a simplified version of what you’ll find in the Add Subscriber example:

strSQL = "SELECT * from DTMFAccessID WHERE DTMFAccessID='" + strDTMFID + "' AND ParentObjectIDType NOT IN (1,9)

 rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount > 0 Then

 Do While rsTemp.EOF = False

 Select Case rsTemp("ParentObjectIDTYpe")

 Case 2

 rsFind.Open "Select Alias, DisplayName from DistributionList WHERE SystemDListObjectID='" + rsTemp("ParentObjectID") + "'", strConnectionString, adOpenKeyset, adLockReadOnly

<…insert code for reporting distribution list conflict…>

 rsFind.Close

 Case 3

‘Yes, subscriber’s have their DTMFAccessID for their primary extension stored in their primary call handler and you’d think that perhaps this would pick that up and do a “double check”. However in the DTMFAccessID table the parent of an extension associated with a subscriber is a subscriber, not a call handler. As such this check is only going to pick up local application call handlers as we want. This is a little confusing since in other places such as calls to the PHGreeting and PHTransfer conversations, references to subscribers are done through their primary call handler.

 rsFind.Open "Select Alias, TextName from CallHandler WHERE CallHandlerObjectID='" + rsTemp("ParentObjectID") + "'", strConnectionString, adOpenKeyset, adLockReadOnly

<…insert code for reporting call handler conflict…>

rsFind.Close

 Case 5

 rsFind.Open "Select Alias, TextName from InterviewHandler WHERE InterviewHandlerObjectID='" + rsTemp("ParentObjectID") + "'", strConnectionString, adOpenKeyset, adLockReadOnly

<…insert code for reporting interview handler conflict…>

 rsFind.Close

 Case 6

 rsFind.Open "Select Alias, TextName, NameLookupHandlerObjectID from NameLookupHandler WHERE NameLookupHandlerObjectID='" + rsTemp("ParentObjectID") + "'", strConnectionString, adOpenKeyset, adLockReadOnly

<…insert code for reporting name lookup handler conflict…>

 rsFind.Close

 Case 9

 rsFind.Open "Select Alias, TextName, LocationObjectID from GlobalLocation WHERE LocationObjectID='" + rsTemp("ParentObjectID") + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 rsFind.Close

 Case Else

 MsgBox “Error! Invalid ParentObjectID type in DTMFAccessID table!”

 End Select

 End With

 rsTemp.MoveNext

 Loop

 End If

After performing all three checks your dictionary or array or whatever you selected as your mechanism for reporting conflicts back to the calling routine will contain ALL conflicts with the selected ID within the dialing domain. This will be a common need for folks doing subscribers adds, imports and updates so it’s a good idea to get this routine in place the way you want it early in your development cycle.

Open an SA web page directly to any object you want

Once you find an object in the database such as a subscriber or a call handler, you may just wish to fall back and punt to the Unity web based SA interface to allow your users to update the properties. This is actually a pretty good technique to use since it absolves you from having to do all that business logic legwork and deal with licensing issues and other headaches that the system administration console already has in place. We use this technique in a number of applications such as the Global Subscriber Manager, Audio Text Manager and dbWalker among others.

The idea is simple – the Unity SA web pages are designed such that you can open them up directly to the object you want without having to go through search dialogs, deal with frames or any of the things that can trip you up with other web interfaces. Armed with a unique ID for the object in question, the Unity home server name it lives on and the “formula” for constructing the URLs you can jump directly to just about any object in the database.

The unique ID in most cases is the “ObjectID” value for the table. For instance the CallHandler table would use the CallHandlerObjectID column as it’s unique identifier. The exception to this is subscribers which use the DirectoryID column instead of it’s SubscriberObjectID column as you would expect. The reason for this is because the original concept was to allow you to grab the DirectoryID value out of the directory (AD, Exchange 55 or Domino) and be able to jump to the web page for that user without having to access the database to find their ObjectID value. On paper this looks nifty. In reality you’re missing one very important piece of information: the home Unity server name. You have to open the web page for the object you want to edit, including subscribers, on the Unity server that object is homed on. This server name is not stored in the directory on the subscriber itself, it’s on the location object the user is associated with. Yes, the subscriber’s directory object has a reference to the location object by ID and technically you could rummage through the directory, get all location objects and find the one you’re looking for and pull the home server name off of it. While this is possible, it’s far from easy. It’s much easier to connect to a Unity server and get what you need out of SQL rather than doing things right out of the directory.

The “Generating SA Links” example on the sample page of www.CiscoUnityTools.com runs through how to create links to all object types, but here’s the quick version. Assuming you have the home Unity server name stored in the variable strServerName and the CallHandlerObjectID stored in the strObjectID variable, to construct the URL that you could use to jump right to that call handler using this code:

strURL = "http://" & strServerName & "/Web/SA/FrameASP/handFrame.asp?id=%01%0703%3A" & transformObjectID(strObjectID)

The transormObjectID function is used to replace characters that the web server has problems with that are found in the ObjectId value. Being a GUID it contains “{“, “}” and “-“ characters, all which throw things off and, as such, need to be replaced with their “escape code” equivalents. This is very simple in VB, the function looks like this:

Public Function transformObjectID(strObjectID As String) As String

 transformObjectID = strObjectID

 transformObjectID = Replace(transformObjectID, "{", "%7B")

 transformObjectID = Replace(transformObjectID, "}", "%7D")

 transformObjectID = Replace(transformObjectID, "-", "%2D")

End Function

This same technique applies to all objects except subscribers. The only thing that changes from object to object is the .asp page name and the “preamble” to the object ID. For instance the interview handler link code would look very similar to the call handler code above but look carefully and you’ll spot the differences:

strURL = "http://" & strServerName & "/Web/SA/FrameASP/IntHFrame.asp?id=%01%0705%3A" & transformObjectID(strObjectID)

For subscribers, however, it’s a little simpler since the directory ID has no characters that need to be replaced with escape codes and there’s no “preamble” to deal with. The code to construct the URL for a subscriber would look like this:

strURL = "http://" & strServerName & "/Web/SA/FrameASP/SubsFrame.asp?DirID=" & strDirectoryID

Even if you’re planning on doing all your own administration interfaces down the road you should consider this technique to “bridge the gap” and provide users of your applications with fast, easy access to administration interfaces you have not yet developed.

Call Handler Information Dump

This example will walk through the process of dumping out the basic information about any call handler in the Unity server you’re connected to. We’ll deal with application call handlers here however this same technique would also work with primary call handlers associated with subscribers. You’d only have to modify the logic to take into account that subscribers can have alternate extensions and that subscribers always have their alternate contact rule enabled and the standard and off hours rules are never used.

This type of application is largely an exercise of knowing which tables contain what information related to call handlers. Since much of this was covered in the Data Object Model chapter I’m not going to spend too much time on this here. There are a couple of important points you’d do well to cover if you’re building a reporting or database “dump” type application in general.

Many places in the Unity database you’ll see a trilogy of properties that indicate where a caller should be sent. These are an “Action”, “Conversation Name” and “Destination Object ID” set that can be found in varying forms in dozens of places throughout the database. If you pop open UnityDB and wander around you’ll find these for user input keys, messaging rules, on call handlers for after message actions, on subscribers for exit actions, name lookup handler exits, interview handler exits etc. Since they come up so often, if you’re building a reporting type application such as this you’ll definitely want to construct a generic routine that can convert these values into a human readable text stream you can reference in your output. The following routine is one used in the Call Handler Information Dump sample code for this purpose:

Public Function strConstructActionString(iAction As Integer, strConversationName As String, strObjectID As String) As String

Dim strAction As String

Dim strSQL As String

Dim rs As New ADODB.Recordset

 Select Case iAction

 Case 0

 ‘an ignore action is only found for user input keys

 strAction = "Ignore"

 Case 1

 strAction = "Hangup"

 Case 2

 ‘An action of 2 is the generic “go to” action which is by far and away the most common action value you’ll encounter. This is used for sending callers to any other object in the system which is, of course, something that happens frequently.

 If (StrComp(strConversationName, "chInterview", vbTextCompare) = 0) Then

 'The chInterview conversation means the conversation is going to send the caller to an interview handler here so there should be the ObjectID of an interviewer in the ObjectId parameter here.

 strSQL = "SELECT TextName FROM vw_InterviewHandler WHERE InterviewHandlerObjectID='" + strObjectID + "'"

 rs.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rs.RecordCount = 0 Then

 strAction = "(error) Send caller to missing interview handler. ObjectId=" + strObjectID

 Else

 rs.MoveFirst

 strAction = "Send caller to interview handler: " + rs("TextName")

 End If

 ElseIf ((StrComp(strConversationName, "PHGreeting", vbTextCompare) = 0) Or (StrComp(strConversationName, "PHTransfer", vbTextCompare) = 0)) Then

 'The PHGreeting or PHTransfer conversation means the conversation is sending the caller to another call handler - either to the transfer rules entry point (PHTransfer) or skipping the transfer rules and going right to the greetings (PHGreeting). Remember that a call handler can also be marked primary which means it's part of a subscriber so we need to take that into account here.

 If StrComp(strConversationName, "PHGreeting", vbTextCompare = 0) Then

 strAction = "Send caller to greeting for "

 Else

 strAction = "Send caller to transfer for "

 End If

 strSQL = "SELECT TextName, CallHandlerObjectID, IsPrimary FROM vw_CallHandler WHERE CallHandlerObjectID='" + strObjectID + "'"

 rs.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rs.RecordCount = 0 Then

 strAction = "(error) Send caller to missing call handler. ObjectId=" + strObjectID

 Else

 rs.MoveFirst

 If rs("IsPrimary") = 1 Then

 'it's a primary call handler which means it's a subscriber we're sending the caller to. Adjust the action string accordingly

 strSQL = "SELECT DisplayName FROM vw_Subscriber WHERE CallHandlerObjectID='" + rs("CallHandlerOjectID") + "'"

 rs.Close

 rs.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rs.RecordCount = 0 Then

 strAction = strAction + " subscriber - (error) could not find subscriber that owns this primary call handler."

 Else

 strAction = strAction + " subscriber with display name = " + rs("DisplayName")

 End If

 Else

‘it’s just an ordinary application call handler

 strAction = strAction + " call handler: " + rs("TextName")

 End If

 End If

 ElseIf StrComp(strConversationName, "AD", vbTextCompare) = 0 Then

 'send the caller to a name lookup handler (or alpha directory, hence the “AD” conversation name there) - there should be an ObjectID of a name lookup handler in the ObjectID parameter.

 strSQL = "SELECT TextName FROM vw_NameLookupHandler WHERE NameLookupHandlerObjectID='" + strObjectID + "'"

 rs.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rs.RecordCount = 0 Then

 strAction = "(error) Send caller to missing name lookup handler. ObjectId=" + strObjectID

 Else

 rs.MoveFirst

 strAction = "Send caller to name lookup handler: " + rs("TextName")

 End If

 ElseIf StrComp(strConversationName, "SubSignIn", vbTextCompare) = 0 Then

 'The subscriber sign in conversation doesn't take a destination object ID, it's a stand alone "routable" conversation that you can just launch directly.

 strAction = "Subscriber sign in"

 ElseIf StrComp(strConversationName, "GreetingsAdministrator", vbTextCompare) = 0 Then

 'The greetings administration conversation also doesn't take a destination object ID, you just send the call to the conversation directly.

 strAction = "Greetings administration"

 Else

 MsgBox "Error! Unknown conversation string passed to strConstructActionString: " + strConversationName

 Exit Function

 End If

 Case 4

 'The take message option is only available in the user input table

 strAction = "Take Message"

 Case 5

 'The skip greeting action is also only available in the user input table.

 strAction = "Skip Greeting"

 Case Else

 'bad action value

 strAction = "Error in strConstructActionString - Invalid action value passed in:"+str(iAction)

 End Select

 StrConstructActionString = strAction

End Sub

With your “action string” routine in place the rest of the call handler information dump work is actually pretty straight forward stuff. You can look in CUDLE and decide which high level information you want off your call handler object itself and then walk through the related collections. The following code chunks assume you already have the rsCallHandler recordset open and pointing to the row with the call handler you’re interested in.

To get all the transfer rules associated with a call handler you’d want to use this query:

RsTemp.Open ”SELECT * FROM vw_ContactRule WHERE vw_ContactRule.ParentObjectID=’”+rsCallHandlers(“CallHandlerObjectID”)+”’”, strConnectionString, adOpenKeyset, adLockReadOnly

This should result in a recordset with 3 rows in it: the standard, off hours and alternate transfer rules for the call handler. You can decide what information you want to gather and report on for each contact rule, however remember that like messaging rules, contact rules are enabled and disabled by using the TimeExpires column. A time in the future or set to NULL means the rule is active, a time in the past means it’s disabled. The standard contact rule should never be disabled, even for primary call handlers where it’s not used since the alternate is always enabled and over riding it. Other information on a contact rule that would be interesting are if it’s going to try and ring a phone or not which is determined by it’s “action” column: 0 means no transfer will take place and a 1 means the transfer will be attempted. If a transfer is enabled you’ll also be interested in reporting which transfer string is going to be used which is stored in the “Extension” column. There’s also information about the number of rings, the transfer type, what we do when it’s busy and which switch (in the case of a dual switch integration) the contact rule is associated with. Again, a trip through the ContactRule table in CUDLE will help you decide which items you want to include in your report output.

To get all the greetings associated with a call handler, you’d want to use this query

RsTemp.Open ”SELECT * FROM vw_MessagingRule WHERE vw_MessagingRule.ParentObjectID=’”+rsCallHandlers(“CallHandlerObjectID”)+”’”, strConnectionString, adOpenKeyset, adLockReadOnly

This should result in a recordset with 6 rows in it: the standard, off hours, alternate, busy, internal and error greetings associated with the call handler. Items of interest in the greeting rows will be the “Action”, “ConversationName” and “DestinationObjectID” set that determine what will happen with the call after the greeting plays as described above. You’ll also be interested in the “PlayWhat” value which determines if Unity will play the canned system greeting (0), a custom recorded greeting (1) or a blank greeting (2). There’s a number of other settings such as how many times the greeting will replay before taking the after greeting action, the path to the WAV file for a custom recorded greeting (if any), if digits are being ignored during this greeting or not etc. Again, you can look through the table itself in CUDLE and decide which properties you want to report on. The only tricky bit is checking to see if the greeting rule is enabled or not using the TimeExpires column as described with the contact rules above.

To get all user input keys defined for a call handler, you’d use this query:

RsTemp.Open ”SELECT * FROM vw_MenuEntry WHERE vw_MenuEntry.ParentObjectID=’”+rsCallHandlers(“CallHandlerObjectID”)+”’”, strConnectionString, adOpenKeyset, adLockReadOnly

This should result in a recordset with 12 rows in it: one each for the keys 0-9, * and #. The primary information about a one key rule is what it’s action values indicate will happen when the user presses that key while a greeting is playing for it’s parent call handler. The action string routine we built above will glean this information nicely for you using the “Action”, “ConversationName”, and “DestinationObjectID” columns. The only other piece of information on a user input key row that would be of interest is if the key is locked or not.

There are a number of other references in the call handler table to other tables that you should be able to figure out how to deal with fairly easily. The LocationObjectID references a row in the Location table, the ScheduleObjectName references a row in the Schedule table, and there’s a set of “action values” for the After Message action as discussed above. The AdministatorObjectID and RecipientObjectID, however, can reference either a subscriber or a public distribution list. You have to check the AdministratorObjectIDType and RecipientObjectIDType values to know which table to go look the ObjectID value up in. A value of “1” means it’s a subscriber and a value of “2” means it’s a public distribution list.

The only other piece of information on a call handler that needs special attention is the language it’s assigned to. These are stored as four digit Windows language codes. For instance US English is language ID 1033. To convert them into human readable strings you’ll want to use a WinAPI call to do this. In VB you have to jump through a couple hoops to make this work since the language doesn’t have “pointers” in the C, C++ sense of the word so you need to wrap the function to make it usable. The following code chunk can be found in the Call Handler Information Dump example as well:

‘WinAPI call as defined in VB to convert a language code into a language name string

Private Declare Function VerLanguageName& Lib "version.dll" Alias "VerLanguageNameA" (ByVal wLang As Long, ByVal szLang As String, ByVal nSize As Long)

‘VB function that calls the above WinAPI function and passes back a usable string to the calling routine. The string returned from the strLanguageIDToFullName should be a full language description string that looks like “English (United States)”.

Public Function strLanguageIDToFullName(lLanguageID As Long) As String

Dim strBuffer As String

Dim rt As Long

 'You need to preallocate space into the string and pass the string variable into the WinAPI call to get the language name - this is how VB "simulates" pointers for the purpose of dealing with the Win32 interface here.

 strBuffer = String$(256, vbNullChar)

 'rt gets the number of characters read into the buffer

 rt = VerLanguageName(lLanguageID, strBuffer, Len(strBuffer))

 If rt > 0 Then

 strLanguageIDToFullName = Left(strBuffer, rt)

 Else

 strLanguageIDToFullName = "(error) No language found for ID=" + Str(lLanguageID)

 End If

End Function

We’ll talk briefly about how to get at subscriber information for similar reporting type needs in the next section.

Subscriber Information Dump

Similar to the call handler information dump in the previous section, this example will walk through the process of dumping out the basic information about any subscriber in the Unity server you’re connected to. Of course a healthy portion of the information about a subscriber is stored in their primary call handler and you can use the previous example to mine that information if you wish. You just have to keep in mind that the alternate contact rule is always enabled for primary call handlers and you’re good to go. We’ll be sticking to subscriber specific data here.

As with the call handler information dump I’m not going to go into too much detail here as this is mostly a process of knowing what tables the subscriber information you’re interested in is stored and what the values mean. We’ll cover the high points in here but you’ll need to make sure you’ve familiarized yourself with the object model and spend some time wandering around in CUDLE. You can get a full code listing for the Subscriber Information Dump on the code samples page of www.CiscoUnityTools.com. Here’s some of the highlights for subscriber related data.

You can use the same routine discussed in the previous section for constructing action string for the exit destination that will take effect when the subscriber uses * to exit out of their subscriber conversation. By default this goes to the opening greeting but as of 4.0(1) it can be customzied on a per user basis.

To fetch the primary and alternate extensions for this subscriber you need to make a simple query against the DTMFAccessID table:

“SELECT * FROM vw_DTMFAccessID WHERE ParentObjectID=SubscriberObjectID”

This will get both primary and alternate Ids. If you want to filter against just the primary or just the alternates you can add a WHERE clause condition against the IsPrimaryID column being ‘0’ or not.

To get the MWI devices for a subscriber is a very similar affair:

SELECT * FROM vw_NotificationMWI WHERE ParentObjectID=SubscriberObjectID

A subscriber can have up to 10 MWI devices defined for their mailbox.

To get your notification devices and rules is a little trickier since the devices and rules are stored in separate tables and don’t reference one another explicitly. They are associated only by their alias matching. As we discussed in the data object model chapter the device table contains the notification device information itself such as the pager number to deliver to or the SMTP address for the text pager and the like. The rules table contains the schedule and the triggering critieria that will activate its device counterpart.

To get information about, say, the Home Phone delivery for a subscriber you’d need to get information from both tables using a query like this:

SELECT vw_NotificationRule.*, vw_NotificationDevice.* FROM vw_NotificationRule INNER JOIN vw_NotificationDevice ON vw_NotificationRule.DlvRuleDevice=vw_NotificationDevice.Alias WHERE vw_NotificationDevice.Alias='Home Phone Rule'

Most of the information associated with devices is pretty straight forward but I’ll tell you now messing with schedules is going to hurt your hair. CUDLE includes the logic for how the schedules for notification rules are stored which is a scheme that lives still as a result of them being crammed into Exchange 5.5’s directory back in the 2.x days. I’m not a big fan of the format, let’s just say that much.

Remember that the HomeServer column in the subscriber table is the server name of the mailstore this subscriber’s mailbox is homed on. A lot of folks confuse this and the HomeServer on the location object this subscriber is associated with which is the server name of the Unity server they are associated with.

The language value found on the Subscriber table indicates which language they hear when they call into the system to check messages. The language callers hear when they get that subscriber’s greeting is set on the subscriber’s primary call handler. The same language code handling discussed in the call handler dump example applies here.

As of Unity 4.0(1) each subscriber can dictate the order in which messages are presented to them in the subscriber message retrieval conversation for both the new message stack and the old (read) message stack. This is a feature called FlexStack and the settings for it are stored in the StackOrder column of the subscriber table. By default this column is NULL which means the default stack order is used. Here’s a chunk of code form the Subscriber Information Dump example that shows how to parse this string out for your users:

 AddText "Active Stack message order for new messages"

 If IsNull(rsSubscribers("StackOrder")) Then

 'The default for new the new message stack is FIFO

 AddText " Stack Order= FIFO"

 ' The default order for new the new message stack items 1 through 7 in the order laid out in this Choose function (which is just a short hand case statement in VB by the way). If the user has specified a specific order the StackOrder column will not be NULL and we’ll parse it out in the Else statement next.

 For iCounter = 1 To 7

 AddText " " + Choose(iCounter, "Urgent Voice Mail", "Voice Mail", "Urgent Fax", "Fax", "Urgent Email", "Email", "Receipts")

 Next iCounter

 Else

 'The user has customized the stack order, we need to pull out the string for new messages. The string looks something like this "NN:F1532467:0:L1234567". In this case we want the 7 characters after the "N:" which stands for new messages. Check the description of this field in CUDLE for more details. The string is always the same length if it's not null so we can simply do this with a MID and Choose function here in just a few lines of code.

‘The first character indicates if we’re going to play messages for the stack in question (new messages here) in LIFO or FIFO order – L or F respectively.

 If StrComp(Mid(rsSubscribers("StackOrder"), 4, 1), "L", vbTextCompare) = 0 Then

 AddText " Stack Order= LIFO"

 Else

 AddText " Stack Order= FIFO"

 End If

 ‘Now snag the 7 digits after the first character (position 5 in the string) and we’ll parse it out to determine the order the user is palying messages for this stack.

 strTemp = Mid(rsSubscribers("StackOrder"), 5, 7)

 For iCounter = 1 To 7

 'Pull the numbers out of the string of 7 characters one after another and print the human readable representation of which message type plays in that spot.

 AddText " " + Choose(Val(Mid(strTemp, iCounter, 1)), "Urgent Voice Mail", "Voice Mail", "Urgent Fax", "Fax", "Urgent Email", "Email", "Receipts")

 Next iCounter

 End If

 'The read message stack info is stored in the same string as the new message stack order, just after the "O:" near the end. We’ll run through the same process here.

 AddText "Active Stack message order for read messages"

 If IsNull(rsSubscribers("StackOrder")) Then

 'The default for read messages is LIFO

 AddText " Stack Order= LIFO"

 ' The default order is message items 1 through 7 laid out in the "choose" function below

 For iCounter = 1 To 7

 AddText " " + Choose(iCounter, "Urgent Voice Mail", "Voice Mail", "Urgent Fax", "Fax", "Urgent Email", "Email", "Receipts")

 Next iCounter

 Else

 'The user has customized the stack order, we need to pull out the string for new messages. The string looks something like this "NN:F1532467:0:L1234567". In this case we want the 7 characters after the "O:" which stands for old messages. The string is always the same length if it's not null so we can simply do this with a MID function

 If StrComp(Mid(rsSubscribers("StackOrder"), 15, 1), "L", vbTextCompare) = 0 Then

 AddText " Stack Order= LIFO"

 Else

 AddText " Stack Order= FIFO"

 End If

 ‘Grab the next 7 digits starting at string position 16.

 strTemp = Mid(rsSubscribers("StackOrder"), 16, 7)

 For iCounter = 1 To 7

 'Pull the numbers out of the string of 7 characters one after another and print the human readable representation of which message type plays in that spot.

 AddText " " + Choose(Val(Mid(strTemp, iCounter, 1)), "Urgent Voice Mail", "Voice Mail", "Urgent Fax", "Fax", "Urgent Email", "Email", "Receipts")

 Next iCounter

 End If

Armed with the information here you should be able to generate a pretty robust call handler and/or subscriber report and, with a little generalized application you should be able to apply that to other objects in the directory as well.

Create New Subscriber

Here’s where things start getting interesting. Creating new subscribers requires we dance with the directory the Unity server is hooked up with (Exchange 5.5, Active Directory or Domino) to create objects and mailboxes external to Unity. In the case of Domino this is currently not possible. The DUCS interface provided by the Domino team does not account for the ability to dynamically create accounts on the fly as we can in Exchange 5.5 and Active Directory. As such this section only applies if your Unity servers are connected to Exchange 5.5, 2000 or 2003 at this point.

With the release of Unity 4.0(1) much of the really ugly legwork for adding directory and mail accounts has now been nicely wrapped up in the SQLSyncSvr functionality which is a huge win for folks wanting to do their own admin interfaces to Unity and is the primary reason I’ve waited until the release of 4.0 before supporting any external administration work. Prior to this the work to deal with this from off box was nothing short of a nightmare. Now it’s all handled for you on the back end through stored procedures.

The key to understanding adding, importing, editing and deleting subscribers in Unity is understanding how this synchronization process works. If you haven’t already now would be a real good time to go review the Architectural Overview chapter since much of the synchronization concept is covered in there. Lets review the interaction with the directory process as it pertains to creating new users.

The first step is to ensure you have licenses on the Unity server you want to create the subscriber on to accommodate a new user or the group of users you wish to add. Getting the licensing information off the Unity box is covered in the “Getting version and licensing information” section above. There are a couple routines defined in the Create Subscriber and Import Subscriber examples on the code samples page of www.CiscoUnityTools.com that allow you to simply pass in if the COS associated with the subscriber template is using TTS and/or VMI licenses and it’ll return to you if you can or can’t create a new subscriber using that COS on the box. In this case you’ll need to go find the COS referenced by the subscriber template you’re using to create the subscriber. This is easy enough to do if you have the alias or ObjectID of the subscriber template using this code:

StrSQL="SELECT AccessTTS, AccessVMI FROM vw_COS INNER JOIN vw_SubscriberTemplate ON vw_SubscriberTemplate.COSOBjectID=vw_COS.CosObjectID WHERE vw_SubscriberTemplate.Alias='" + strAlias + "'"

RsCOS.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

‘You can check out the source for this routine in either the Create Subscriber or Import Subscriber code samples.

If checkForAvailableLicense(strUnityServerName, rsCOS("AccessTTS"), rsCOS("AccessVMI")) = False Then

<no licenses available to add new user to that COS>

Else

<go for it>

EndIf

If you decide to get cute and do an end run around the licensing system here, eventually your evil ways will catch up with you. In the short term it’ll let you do it and the only thing you’ll notice as you rocket past your licensed limits is that the SA will no longer allow you to add/import users directly and you’ll sing and dance around your office with the joy of an amazing cost saving device you’ve discovered. Then clouds will roll in and you’ll start noticing errors being logged daily to the application event log warning you that you’re out of compliance and you need to purchase more licenses or delete users. Eventually Unity will shut itself down entirely. Then brawny, but well dressed fellows with snappy “Cisco” logos on their very large polo shirts will show up at your door with folded newspapers over their hands. OK, maybe not but there are no free lunches, people, so make sure you do your license checks up front and keep things on the up and up.

Once you know your licensing is OK, the next step is adding the information about the subscriber into the local SQL database in the Subscriber table using the sp_CreateSubscriber stored procedure. The stored procedure requires you pass in a primary extension number a reference for a subscriber template to use when creating the subscriber and the new subscriber’s alias, first and last names. There are a number of other items you can optionally pass in such as the display name, SMTP Address, AddressByExtension value, language etc. Not all properties associated with a subscriber can be customized in this call to create the subscriber, it you wish to fiddle with things such as alternate extensions, greeting rules, contact rule configuration and the like you’ll have to do that after the user has been created. This stored procedure will use the subscriber template you pass in and create the subscriber’s primary call handler and all the associated objects such as contact rules, messaging rules, user input keys, notification devices and so on. The subscriber will be complete in the database with one big exception: they will not have a mailbox or a directory account.

The next step is to create the aforementioned directory and mailbox accounts. You can do this by setting the DirectorySync and DirectorySysncFlags values into the stored procedure such that Unity will attempt to create these accounts for you automatically when you add the subscriber to SQL. This process is asynchronous which means the stored procedure is going to return to you right away and if you want to see if the user was successfully added to the directory you need to pass in a DirectorySyncTicket and watch the DirectorySyncTicket table and wait for your ticket to show up there with a “pass or fail” grade. You definitely just don’t want to assume the user has been added to the directory and move on here since there are any number of reasons this can fail all of which are external to Unity and out of our control. If the user failed to get a directory and mailstore object created you need to report that error back to the user somehow and back that user out of SQL by deleting their subscriber record. Triggers in SQL will automatically remove all their associated information in other tables as needed.

You can also do this by adding a bunch of subscribers to SQL using the same sp_CreateSubscriber stored procedure, however not passing in any DirectorySync flags. Once you’re done adding users to the directory you can call the sp_DirectorySync stored procedure and have it synchronize all users in the Subscriber table that do not have a DirectoryId value yet. The lack of a DirectoryID value indicates the user does not have an object in the directory associated with them and, as such, they are not a valid subscriber. We’ll cover this method of adding and importing users in bulk in the Batch Subscriber Operations section a little later.

The directory creation function is done using the rights of the domain account you have associated with your “directory facing” accounts in Unity. Specifically the account associated with the directory facing account such as AvDSAD service in the case of Exchange 2000/2003 or AvDSEx55 in the case of Exchange 5.5. If the permissions on that account do not have rights to create new user objects in the container specified (which defaults to the container you selected during Unity configuration setup if you don’t over ride it when calling the sp_CreateSubscriber stored procedure) then the create will obviously fail. You need to be sure that account has all the juice you need for creating users where you want.

The high level details here are actually pretty straight forward. Lets actually work through the code needed to do this and discuss some of the options you have along the way. This is part of the code you’ll find in the Create Subscriber example found on the source code samples page of www.CiscoUnityTools.com:

‘This function returns true if the subscriber has their directory object and mailbox created OK and false otherwise. This function is specifically setup to only add a new user to the directory, it will not allow the synchronization process to bind to an existing user in the directory. It’s a real good idea for you to follow the same convention to avoid messy accidents in your directory. For binding to existing users you should use a separate import function as discussed in the next section.

This function returns true of the subscriber was properly created and false otherwise.

Public Function CreateSubscriber() As Boolean

Dim rsCreate As ADODB.Recordset

Dim oCommand As ADODB.Command

Dim strSyncTicket As String

Dim iCounter As Integer

Dim strTemp As String

 Set rsCreate = New ADODB.Recordset

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

‘I assume at this point that you’ve already gathered the alias, extension number, the alias of the subscriber template you want to use for creating this user and their first and last names. If you’re getting this from the user directly or slurping it in from a CSV file or whatever is not really important to the creation process here.

 oCommand.CommandText = "sp_CreateSubscriber"

‘It’s a good idea to use the CreateParameter function provided off the Command object in ADO here to add parameters to your stored procedure since it takes care of expunging stray single quotes and the like automatically such that you don’t get malicious folks slipping in ugly stuff into your SQL commands. You can build a straight string with the parameters yourself but all my code uses this method.

‘In this example the alias, extension number (DTMFAccessID), first name, last name and display name are being pulled off of text controls on the main form that the user has populated manually. You can, of course, snag this information any way you like.

 oCommand.Parameters.Item("@Alias") = oCommand.CreateParameter("Alias", adVarChar, adParamInput, , txtAlias.Text)

 oCommand.Parameters.Item("@DtmfAccessId") = oCommand.CreateParameter("DtmfAccessId", adVarChar, adParamInput, , txtExtension.Text)

 oCommand.Parameters.Item("@FirstName") = oCommand.CreateParameter("FirstName", adVarChar, adParamInput, , txtFirstName.Text)

 oCommand.Parameters.Item("@LastName") = oCommand.CreateParameter("LastName", adVarChar, adParamInput, , txtLastName.Text)

 oCommand.Parameters.Item("@DisplayName") = oCommand.CreateParameter("DisplayName", adVarChar, adParamInput, , txtDisplayName.Text)

‘For this example I assume we’re creating a full Exchange subscriber here, not an internet subscriber so we hard code the SubscriberType parameter to “1”. You can, as always, check CUDLE for the different subscriber type values allowed here, however creating remote users is a bit of a different bag than creating full subscribers so be sure you know what you’re doing.

 oCommand.Parameters.Item("@SubscriberType") = oCommand.CreateParameter("SubscriberType", adInteger, adParamInput, , 1)

‘Only the default Example Administrator account should be marked undeletable however in special cases you may wish to add your own accounts that can’t be deleted from the SA interface as well. Here I assume the normal case of deletable.

 oCommand.Parameters.Item("@Undeletable") = oCommand.CreateParameter("Undeletable", adInteger, adParamInput, , 0)

‘You can pass either the alias of a subscriber template here as I do or, perhaps better style, the SubscriberTemplateObjectID value into the @templateOid parameter instead. Either way will work fine, I use the alias here since it was easier to list it in a combo box and have the user select one.

 oCommand.Parameters.Item("@templateAlias") = oCommand.CreateParameter("templateAlias", adVarChar, adParamInput, , cmbTemplates.Text)

 'The UID and the alias should almost always match - the UID is actually what maps to the mail alias in the directory - the alias field above is used internally by Unity - if you don't pass a UID value it'll use the Alias string but it's a good idea to always pass it explicitly to avoid any confusion.

 oCommand.Parameters.Item("@Uid") = oCommand.CreateParameter("Uid", , adParamInput, adVarChar, txtAlias.Text)

 'The phone password is passed in as clear text here - it gets crunched and encrypted into MD5 by the stored procedure during the subscriber create process. This parameter is optional, the subscriber template has a default phone password that will be applied if this is not included.

 oCommand.Parameters.Item("@PWDTMF") = oCommand.CreateParameter("PWDTMF", adVarChar, adParamInput, , txtPhonePassword.Text)

‘Another optional value is to list the user in the directory based on a checkbox value on the main form. Again, the subscriber template will fill in a default value for this if it’s not passed in.

 oCommand.Parameters.Item("@ListInDirectory") = oCommand.CreateParameter("ListInDirectory", adBoolean, adParamInput, , chkListUsersInDirectory.Value = vbChecked)

 'The mailstore you create the user on can be left up to the back end if you like - it'll create the user in the Organization Unit (E2K) or user container (E55) you selected during the mailstore configuration setup portion of the Unity install. If you'd like to dictate a particular mailstore you need to include the MailboxStoreObjectID value from the MailboxStore table for the store you want. We have this information stored on the form in two drop down controls on the main form in my example here. The MailboxStore table will include ALL mailstores visible in the forest or oranization. Remember, it’s up to you to make sure the domain account you have associated with the Unity directory services has rights to create users in this container. The Permissions Wizard will only check the one container you selected during initial setup.

‘On my form I have a readable list of mailstore names in the cmbMailstores combo box and a list of MailstoreObjectID values in the hidden cmbMailstoreObjectIDs combo box. The two are tied together using the list ID values such that when a user selects a readable mailstore name we can fish out it’s objectID easily. With a decent 3rd party grid control at your disposal this would be a little nicer but we’re trying to keep the sample code generic.

 oCommand.Parameters.Item("@MailboxStoreObjectID") = oCommand.CreateParameter("MailboxStoreObjectID", adGUID, adParamInput, , cmbMailstoreObjectIDs.List(cmbMailStores.ListIndex)

 'You usually want to tell the stored procedure to synchronize SQL to the directory for this subscriber after adding them so you should pass a 1 for the DirectorySync flag here. In rare cases you may want to add users without synching and then do it "all at once" after, say, a big batch operation. We'll deal with that scenario in the Batch Subscriber Operations section later.

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 1)

 'We want to pass in a resynch mask that synchs the subscriber, the DLs they were added to and to only try create a new object in AD, not to bind to an existing one if the mail alias happens to match something already there. The synchronization process accepts a number of flags to control what it is going to write to the directory from the SQL database. Here’s a list of the flags of interest to us:

'0x00000001 - synch subscribers

'0x00000002 - synch distribution lists

'0x00000008 - synch locations. For synching new users this flag does not apply. You’d only use this if you were creating or editing delivery location objects.

'0x0000FFFF - synch all types

'0x01000000 - only synch new guys without directory ID values - used for batch processing. In this case where we’re synching an individual user this flag does not apply.

'0x02000000 - don't create anything, just try to associate to existing object - prevents accidental object creation in AD.

'0x04000000 - only try to create new, don't attempt to associate

'0x08000000 - Create NT account - for use with Ex55 systems. You have the option of only creating a mailbox in Exchange 5.5 and not an NT account to go with it. This would prevent the user from getting access to the SA or PCA interfaces but may be desirable in some scenarios. This example is written against Exchange 2000 so I don’t pass this in.

 'The values we’re interested in for this operation are to create only new subscribers and to sync distribution lists that user may have been added via their subscriber template definition. These flags are 0x04000000 + 0x00000001 + 0x00000002 = 67108867 decimal. With this flag if there is a conflicting alias in the directory in the domain the user is being added to, the sync will be considered a failure and the user will not be added.

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 67108867)

 'We need to create a GUID that we can pass into the stored procedure such that we can look for it in the DirectorySyncTicket table in SQL which is used to pass back the results of this sync - we have to use an asynchronous process here since the synch with AD can take a while and doing a blocking call for such things is not a good idea. See below where we wait for the ticket to get inserted into the table and let us know how things went. If you don't pass a synch ticket here, no record is created in the DirectorySyncTicket table. We show another method of dealing with this issue in the Subscriber Batch Operations section later. The generateDirectorySyncTicket is routine that calls the “GUID” function in the Scriptlet.TypeLib library. This just generates a random GUID we can use as a unique identifier to watch for – you can get the code behind this in the full listing for this example on www.CiscoUnityTools.com.

 strSyncTicket = generateDirectorySyncTicket

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

 'Let the stored procedure call rip. Remember, this will return right away even if you’ve asked it to sync the user to the directory.

 rsCreate.CursorLocation = adUseClient

 rsCreate.Open oCommand, , adOpenDynamic, adLockOptimistic

 'The SP will return a recordset populated with one row for the subscriber you added. The row returned is from the subscriber table in UnityDb so if you want to customize your users' properties with items that are not included in the stored procedure's parameters, now's your chance. If something went wrong, the recordset will be empty.

 If rsCreate.RecordCount = 0 Then

 MsgBox "SubscriberCreate stored procedure failed: " + Err.Description

 CreateSubscriber = False

 ‘Since the subscriber creation stored procedure failed to create anything, there’s nothing to clean up here. We can just exit out after cleaning up the local recordsets

 GoTo BailOut

 End If

 'The stored procedure itself kicked off the synchronization process with the directory using the flags we used above. You need to wait for the sync to complete here and check for errors before moving on unless you're doing some batch operation or you have a note from your mother stating otherwise. The WaitForSyncToFinish function will wait for the syncher to finish and will also take care of cleaning up the synch ticket row for you as well as rolling back the subscriber add if it fails for whatever reason. The code listing for this function follows shortly.

 If WaitforSyncToFinish (strSyncTicket) = False Then

 ‘We remove the subscriber using the sp_DeleteSubscriber stored procedure here since leaving a subscriber that has not properly been tied to a directory object in SQL is a bad idea all around. The only required parameter for this stored procedure is the SubscriberObjectId value which we have off the rsCreate recordset returned from the subscriber creation stored procuedure earlier.

 oCommand.CommandText = "sp_DeleteSubscriber"

 oCommand.Parameters.Item("@SubscriberObjectID") = oCommand.CreateParameter("SubscriberObjectID", adGUID, adParamInput, , rsCreate(“SubscriberObjectID”)

‘There’s no reason to pass in any flags to force a directory synch here since this guy was not tied to a directory object to begin with. As such, just execute the stored procedure here. Triggers in SQL will take care of getting rid of all the related objects in the database associated with this subscriber such as it’s primary call handler, MWI entires, notification devices etc…

 oCommand.Execute

 CreateSubscriber=False

 MsgBox “The syncronization to the directory failed for this subscriber add. Subscriber removed from SQL. You can check the SQLSyncSvr logs in the \commserver\logs directory for more details.”

 Else

 CreateSubscriber=True

 MsgBox “Subscriber Added”

 End If

BailOut:

 ‘clean up after ourselves – not strictly necessary with the VB garbage collection stuff but not a bad thing to do in general

On Error Resume Next

 rsCreate.Close

 Set rsCreate = Nothing

 Set oCommand = Nothing

End Function

If the sync process went through then the subscriber is ready to roll. The licensing service will automatically update the used license counts and, if you’re in a pooled license scenario, push that information out to the directory for the other Unity servers to know about. You shouldn’t need to do anything other than checking for available license counts up front before adding a new user.

I’ve consolidated the logic for waiting for a syncronization operation to complete and cleaning up after myself into one function since it’s something that needs to be done so often. Whenever you add, delete or edit a subscriber or add, delete or edit a distribution list you’ll have to syncronize that information to the directory. It’s a good idea to get such a function in place in your own applications early on since you’ll need to use it often.

‘The WaitForSyncToFinish function returns TRUE of the syncronization succeeds and FALSE if it fails. In either case it will clean up the SyncTicket table when it’s done.

Public Function WaitForSyncToFinish(strSyncTicket As String) As Boolean

Dim rsSyncTicket As ADODB.Recordset

Dim iCounter As Integer

Dim oCommand As ADODB.Command

 Set rsSyncTicket = New ADODB.Recordset

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

 ‘I have this hard coded to check every 2 seconds up to 20 times (40 seconds). You can change this or make it a parameter you pass in or whatever. If it takes more than 40 seconds to sync something to the directory, however, you have some latency issues outside of Unity that you need to take a close look at.

 For iCounter = 1 To 20

 Sleep 2000

 rsSyncTicket.Open "SELECT * FROM vw_DirectorySyncTicket WHERE Ticket='" + strSyncTicket + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsSyncTicket.RecordCount > 0 Then

 'the record is created and then the result value is populated in it- the timing can bit you here so after we open the recordset and find a match on the DirectorySyncTicket check the result value - it should never be NULL so if it is, fall through and close/reopen the record set in another second. A little awkward, but hey...

 If IsNull(rsSyncTicket("result")) = False Then

 GoTo TicketFound

 End If

 End If

 rsSyncTicket.Close

 Next iCounter

 'We timed out waiting for the syncronization to complete. There's no row to remove so we can just pull the rip cord here.

 WaitForSyncToFinish = False

 GoTo BailOut

TicketFound:

 rsSyncTicket.MoveFirst

 If rsSyncTicket("result") = 0 Then

 'you're golden, everything finished OK.

 WaitForSyncToFinish = True

 Else

 'You have not been living right and the synch failed for some reason.

 WaitForSyncToFinish = False

 End If

 'Since we explicitly requested a synch ticket above we need to clean up that row in the DirectorySyncTicket table

 oCommand.CommandText = "sp_DeleteDirectorySyncTicket"

 oCommand.Parameters.Item("@Ticket") = oCommand.CreateParameter("Ticket", adGUID, adParamInput, , rsSyncTicket("Ticket"))

 oCommand.Execute

BailOut:

 On Error Resume Next

 Set oCommand = Nothing

 rsSyncTicket.Close

 Set rsSyncTicket = Nothing

End Function

We’ll reference the WaitForSyncToFinish function in other routines that require syncronization to the directory later in this chapter as well.

Import Subscriber

You can import subscribers from AD (Exchange 2000/20003), Exchange 5.5 or Domino. This example uses the alias of the subscriber to find the user in the directory and, assuming that value is unique (it really should be for Exchange) this will work fine across all back ends Unity can be connected to. If you have a situation where for whatever reason the alias is not unique in AD or Domino then you’ll need to also pass in the DirectoryID value which is discussed at the end of this section. In the case of Domino the “alias” maps to the short name for the user which legitimately may not be unique so it’s a good idea to pass in the Unique ID (UUID) of the user as the DirectoryID to ensure we match up with the right user. The full code listing for this example on www.CiscoUnityTools.com is specific to importing users from AD since it shows how to navigate around the directory using a tree control and the like, however the base code for importing users via SQL stored procedures is value for all back ends.

Importing a subscriber is actually very similar to creating a new one except you’re expecting the SQLSyncer to bind to an existing object in the directory instead of creating a new one. The chances of failure here are much less than in creating a new user, however it is not a “slam dunk” by any means so you still need to check for success or failure here.

You use the same sp_CreateSubscriber stored procedure that you do for creating a new user. Yes, there is a sp_ImportSubscriber stored procedure but that’s specifically for use by the dbImport tool as it’s pulling 2.x data into a 3.x and 4.x system, you definitely do not want to use that one for importing users from your directory. In fact you wont even find it in Unity 4.0(3) and later since the FullDBImport application was “depreciated” in that version and it was no longer necessary. You need to follow the same procedure for importing a user as for creating a new user outlined above. First check for available licenses, then fill in the required values for the sp_CreateSubscriber stored procedure, then synchronize with the directory and check the results. There are a couple of differences for the import scenario, however.

The first and most important difference is in the flags passed in for the synchronization option. We want to pass in a resynch mask that synchs the subcriber, the DLs they were added to and to only try and bind to an existing AD object, not create a new one if a match in AD is not found for the alias (and directory ID if you choose to pass that in). Remember from the list of flags in the last section that 0x02000000 means to not create anything, only look for an existing directory object to bind with and if none is found to fail. The values for these flags are 0x02000000 + 0x00000001 (sync subscribers)+ 0x00000002 (sync distribution list changes) = 33554435 decimal. So the DirectorySyncFlags parameter like would look like this for import:

oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 33554435)

Yes, you could just not pass any specific flag in and tell it to synch the subscriber and distribution list and not specifically limit it to creating a new user or importing an existing user only. If you don’t pass in the 0x02000000 or the 0x04000000 values then the syncher will simply try to find the user and if no one is found then create a user on the fly. I don’t recommend this, however, as it’s easy to get into situations where you accidentally create a directory account you didn’t mean to or bind to an existing account you didn’t intend to. It’s best to have explicit imports and create functions to prevent problems like this.

The second difference is you can pass in the DirectoryID of a user in the directory and the SQLSyncSvr will use that value for searching for the user in the directory before then searching for the alias. You must still pass in the Alias value here as well but if you're concerned about mail aliases not being unique in your directory you may wish to go this route. Technically you can have the same alias in multiple domains in AD although the practice is a seriously bad idea in most cases. The SQLSyncSvr will first try to find the directory ID if it’s passed in and if no match is found or it’s not passed in, it’ll then search for a user by alias in the domain. If that fails to find a match in this case we’ll consider it a failure since we’re passing in synchronization flags that force it to only bind to an existing user an not to create one on the fly in this example. You could, of course, have it create a new account (for AD and Exchange 5.5 anyway) on the fly in that case but I don’t recommend that practice as a rule.

To add the directory ID you’d include this extra line in the stored procedure construction cod:

 oCommand.Parameters.Item("@DirectoryId") = oCommand.CreateParameter("DirectoryId", adVarChar, adParamInput, , strDirectoryId

The full code listing for the Import Subscriber example on the web site also shows how to navigate around AD and fetch the directory Id of the user you want to import. What we refer to as the DirectoryID value is actually the ObjectGUID value in AD – we convert this into a string before stuffing it into SQL or using it in a stored procedure. The same conversion needs to take place if you’re importing a subscriber by DirectoryID or a public distribution list (discussed later). The logic for converting the GUID in AD into a string looks like this:

'This function converts the ObjectGUID value in Active Directory into a DirectoryID string that we store in SQL and that the stored procedures can use to find the user in the directory. The ObjectGUID property on the user is stored as an array of 16 byes - to convert it to a usable DirectoryID string we need to convert each of those byes to a zero padded hex value (i.e. 7=0x07, 18=0x12 etc...) and concatonate the values into one 32 character long string which is what's stored in SQL and passed into the stored procedures. If you've used ADSI to search by this value you also know you have to do a similiar conversion to get it to work properly there as well.
Function strConvertObjectGUIDToString(unityUser As IADsUser) As String

Dim iCounter As Integer

Dim strTemp As String

Dim strDirectoryID As String

 'walk through each of the 16 bytes in the array off the ObjectGUID property for the user. For the record the ObjectGUID off a distribution list needs to be converted in the same way.

 For iCounter = 0 To 15

 strTemp = vbNullString

 strTemp = Trim(Hex(unityUser.Get("OBjectGUID")(iCounter)))

 'if the value is only one character, force it to be zero padded on the left

 If Len(strTemp) = 1 Then

 strTemp = "0" + strTemp

 End If

 strDirectoryID = strDirectoryID + strTemp

 Next iCounter

 strConvertObjectGUIDToString = strDirectoryID

 Exit Function

In Domino the DirectoryID value corresponds to the UUID (Unique Identifier) of the user in the directory. Again, you can pass just the alias of the user or both the alias and the DirectoryID (UUID) to bind to an existing user in Domino – this is the only method for adding new subscribers to Domino programmatically since creating new users on the fly is not supported.

Other than those difference the procedure is identical to that outlined for creating new subscribers including the synchronization ticket handling. In the Batch Subscriber Operations section later we’ll discuss how to import in bulk where which is again very similar to bulk create operations.

Edit Subscriber

Editing properties on subscribers is pretty straight forward stuff in and of itself. However you need to keep in mind that when you change some properties on a subscriber, if you don’t force those values to write through to the directory they will not “stick”. As soon as another change happens on the subscriber or their user object in the directory, the local value you stuffed into SQL will get stomped on. For instance if you add an alternate extension for a subscriber in SQL but don’t initiate a directory synchronization to force that value into the directory it’ll appear to be fine for a while. Being the careful engineer that you are you do test calls and SA lookups to be sure it’s working as you expect and then go home. Perhaps days later suddenly your extension is gone! Unity has a heinous bug and is dropping data randomly! Yes, I’ve gotten several such escalations. This is an easy trap to fall in, one I’ve tripped up on myself from time to time. Eventually SQL triggers will take care of “knowing” which changed values require a synch with the directory for you but for now it’s up to you to ask for the synch when you edit the user.

So, which properties do you need to worry about? The easiest way to approach this is to look at what all Unity will sync with the directory. For Active Directory you can turn on AvDSAD traces to see what the directory monitor writes through when you make a change to a subscriber in the SA as was demonstrated in the Architectural Overview chapter. For review there are 27 values that are pushed into and/or pulled from the directory when you make a change to a subscriber. All properties are pushed and fetched regardless of what you’ve changed, the SA isn’t smart enough to know which property you’ve changed so it asks the directory writer to push or get them all regardless. Some of these properties are “read only” from Unity’s perspective such that we’ll only get updated values from the directory and pull them in.

Here’s a quick run down on the 27 properties we keep synched with in the directory, a good chunk of them are things you will not (or should not) be changing in the local SQL database:

· AddrType. This indicates what type of mailstore the subscriber is connected to. Currently this can be “55” for Exchange 55, “2K” for Exchange 2000 or “DO” for Domino. This is one of those “read only” properties you should never be changing in SQL, or you’ll wreak all kinds of havoc.

· Alias. Once a user is created in the directory you should not be changing this value in SQL and then synching it through. You should only set this value in SQL when creating or importing a new user. Once created this value should not be changed in SQL again.

· AMISDisableOutbound. This only applies for AMIS internet subscribers. It’s used to indicate that a human recipient received an AMIS delivery attempt through an internet subscriber and requested we stop calling their number by pressing the indicated DTMF keys in the conversation. For full subscribers this property does not exists.

· AlternateDTMFIDs. If you add, remove or update any alternate DTMF Ids in the DTMFAccessID table you need to synch those changes through to the directory or they will be lost.

· DirectoryID. This is the unique identifier for the user in the directory and once it’s set you should never change it in SQL. You can set it when importing a new subscriber from the directory but once it’s filled in you should never touch it. It’s a read only property from Unity’s perspective.

· DisplayName. If you change the display name on a subscriber you need to synch that change to the directory or it will be lost.

· DTMFAccessID. If you change the primary extension number of a subscriber you need to synch that change through to the directory or it will be lost. In versions prior to Unity 4.0(3) this value was actually stored in the DTMFAccessID column of the primary call handler associated with the subscriber. In 4.0(3) and later that column is removed (though preserved through the views to remain backwards compatible) and is instead stored in the DTMFaccessID table itself.

· FirstName. If you change the first name of a subscriber you need to synch it through to the directory or it will be lost.

· LastName. If you change the last name of a subscriber you need to synch it through to the directory or it will be lost.

· ListInDirectory. If you change the “list in directory” status of a subscriber you need to synch it through to the directory or it will be lost. This allows or restricts the subscriber from appearing in any name lookup handler (directory handler) in the system.

· LocationObjectID. For full subscribers you would never change their location object Id assignment since all full subscribers are associated with the one primary location object on the Unity server they are created on. You cannot change location assignments on the fly.

· MailDatabase. This points to the message store in the mail database this subscriber’s inbox is stored on. You should never touch this value, it’s read only from Unity’s perspective. If the user is actually moved between mail servers in the back end, the directory monitors will pick up on this change and update this value for you – there’s no need to ever change this value on your own.

· MailboxID. This points to the specific mailbox in the mail database this subscriber is associated with. You should never touch this value, it’s read only from Unity’s perspective.

· MailboxSendLimit. This value is only pulled from the directory in, it’s value is not pushed out so you should never change it, it’s read only from Unity’s perspective. If you need to change this value for an Exchange back end you can use the Message Store Manager to accomplish that as well as the receive and warning limits below. The MSM utility uses CDO to make this change, by the way. The Unity directory monitors do not have the ability to fiddle with these values in the mailstore at this point.

· MailboxRecieveLimit. This value is only pulled from the directory in, it’s value is not pushed out so you should never change it, it’s read only from Unity’s perspective.

· MailboxWarningLimit. This value is only pulled from the directory in, it’s value is not pushed out so you should never change it, it’s read only from Unity’s perspective.

· ObjectChangedID. This value is used to keep track of who has the “newer” version of the user’s information: the directory or the local SQL database. The only time you should touch this value is if you’re trying to force the synch to pull in data from the directory into SQL for this user. You could set the value to 0 in SQL which would force the directory monitor to take the information in the directory and pull it in for that record since obviously 0 is going to be less than any change ID found in the directory. The reasons for doing this are rare but include disaster recovery scenarios. Outside of that you should never be fiddling with this value in the database.

· PrimaryFaxNumber. This is the value stored in the “Fax Number” field in Exchange and it shows up as the “Fax ID” value in the SA. If you change it in the database you need to synch it through to the directory or the change will be lost.

· RecipientEmailAddress. This maps through to the AddressId in SQL and is read only from Unity’s perspective.
· RemoteAddress. The only time you would be editing this value in SQL would be for internet subscribers (AMIS, Bridge, VPIM and SMTP subscribers) and even then only if you know what you’re doing. You should never touch this for full subscribers.

· SID. You should never be fiddling with this value in SQL at all. This is what’s passed through to us from IIS when a user attempts to gain access to the web based system administration consol or the PCA or the like. This is read only from Unity’s perspective.

· SIDHistory. This value is read only and should not be fiddled with in SQL. If you need to map an alternate directory SID to a Unity subscriber account you can do this in the Credentials table in SQL using the GrantUnityAccess command line tool if necessary.

· SMTPAddress. The full SMTP address associated with the subscriber. This is usually generated by the mail server automatically upon user creation. You shouldn’t be changing this value in SQL, it’s read only from Unity’s perspective.

· VoiceName. If you change the recorded voice name of a subscriber (or remove it) you need to synch that change through to the directory or it will be lost.

· XferString. If you change the “Extension” value on the Alternate Contact rule associated with the subscriber’s primary call handler, that change should write through to the “XferString” column on the subscriber via a trigger. If you’re going to change the subscribers transfer string you need to do it on the alternate contact rule and let the trigger do the copy and then synch the change through to the directory. If you just change the XferString directly it wont have the desired effect. This value is used for cross box transfers when servers are in the same dialing domain.

So the short story is there are 9 properties you may be changing on subscribers that will require you request the SQLSyncSvr to push the information into the directory for you:

alternate extensions, primary extension, display name, first name, last name, list in directory, primary fax number, voice name and transfer string. You’ll want to keep this list handy somewhere since you’ll want to be careful to force a synch when necessary but not otherwise. Doing a synchronization to the directory is time consuming stuff and if you’re editing properties on users that don’t need to be updated in the directory, you don’t want to ask for the synch.

The next thing you should be concerned about is how you go about editing properties associated with subscribers. As we’ve noted throughout, whenever doing adds and updates you should always use stored procedures if you can. Information about subscribers is, of course, stored in several tables as you’ll know since of course you’ve carefully read the data object model chapter. As such I wont belabor the topic here other than to note the list of stored procedures necessary to edit values in all the tables you need for subscriber information:

Sp_ModifyCallHandler

Sp_ModifyContactRule

Sp_ModifyMenuEntry

Sp_ModifyNotificationDevice

Sp_ModifyNotificationMWI

Sp_ModifySubscriber

Sp_AddAltDTMFID

Sp_RemoveAltDTMFIdsByOid

The Alternate DTMFAccessID values don’t require you edit the table so much as add and remove rows from the table so there’s a pair of stored procedures necessary for that. Be aware, however, that the sp_RemoveAltDTMFIDsByOID will remove all alternate Ids for the subscriber you identify by their ObjectID. There’s currently no stored proc to remove or edit a standing alternate ID. In versions of Unity prior to 4.0(3) you’d change the primary extension of the subscriber on the DTMFAccessID column of the primary call handler associated with that subscriber and SQL triggers would take care of pushing the updated value into the DTMFAccessID table as necessary. For Unity 4.0(3) that column only exists in the view for backwards compatibility. Regardless, the sp_ModifySubscriber stored procedure allows you to update the primary extension, it’ll take care of doing the dirty work on the back end for you.

The keen observer will notice one important omission here. There is no sp_ModifyMessagingRule to update greetings for subscribers. There is a sp_SetMessagingRule but I seriously dislike that stored procedure since if it doesn’t find the rule you asked it to find it creates one on the fly! This is very bad practice indeed since you don’t want to be creating new messaging rules unless you’re writing the setup scripts for Unity. Also, it doesn’t contain all the properties for messaging rules that you may need to edit. This is an unfortunate state of affairs but unavoidable until the release of 4.0(4) can address this. For now we will have to edit the messaging rule tables directly through raw table access. I will give you a note for your teacher to do this for now but when 4.0(4) releases you’ll definitely want to change over to using the stored procedure since as I mentioned earlier, changes in the database architecture will be phased in over the next few 4.0(x) releases.

I’m not going to exhaustively cover every possible property on subscribers that you can change, you should be able to extrapolate what you need here and use the Data Object Model information to run down which table has the information you want to twiddle with. I’ll cover a couple examples here and you can check out the Edit Subscriber sample project on the code samples page of www.CiscoUnityTools.com for more.

Add an alternate extension to a subscriber

The process of adding an alternate extension is pretty easy. You just need the SubscriberObjectID value of the user you want to add it for and the DTMFID you want to add and you call the sp_AddAltDTMFIdByOID stored procedure. However, you need to be aware of a few pitfalls here.

First, it’s up to you to limit the number of alternate extensions to 9. If you add more than 9 the SA pages that show this information will not be happy.

Second, and more importantly, there are no defined “slots” for alternate extensions to live in. They are all carted around the directory in an unsorted “blob” of data that is unpacked by the directory monitor and stuffed into the DTMFAccessID table. As such you can’t, say, make a company wide policy that alternate extension “4” is going to be used for cell phones and alternate extension “7” is everyone’s fully qualified 10 digit North American Dialing Plan ID. This would be really handy in some situations and is something that will be provided in future releases however for now you have to treat alternate extensions as an unsorted bag of Ids. Once you add an ID for a large number of users in bulk, for instance, there’s no easy way to go change that ID for everyone since it’s difficult if not impossible to identify it as opposed to Ids users may have had included for their home phone or cell phone or the like. Unity 4.0(4) will rectify this by introducing “named” alternate extensions that can be edited by name. Just keep this in mind before tearing off down a path where you start slamming alternate extensions in for folks left and right. You may create a mess if you’re not careful.

Finally, it’s up to you to make sure the alternate extension does not conflict with any ID in the dialing domain. Earlier in this chapter we covered a couple ways to do this depending on which version of Unity you’re running. Just be aware the stored procedure for adding alternate extensions does not make such checks for you and will happily hand you a gun and let you shoot yourself in the foot. Don’t do that.

So, to actually do the add is fairly straight forward stuff. In this example I assume you already have the SubscriberObjectID of the subscriber you want to add the ID to and, of course, the DTMFID you want to add that you’ve already checked meets the requirements: it’s all digits, less than 30 characters long and doesn’t conflict with any other ID in the dialing domain. See the Subscriber Create section for details on how to check for ID uniqueness.

Dim oCommand As ADODB.Command

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

 oCommand.CommandText = "sp_AddAltDTMFID"

‘yes, strGUID is not a very descriptive parameter name. This is the SubscriberObjectID of the subscriber you want to add the alternate extension for.

 oCommand.Parameters.Item("@strGUID") = oCommand.CreateParameter("strGUID", adGUID, adParamInput, , strSubscriberObjectID)

'ParentOBjectIDType for subscriber is 1. Refer to CUDLE.

 oCommand.Parameters.Item("@nParentObjType") = oCommand.CreateParameter("nParentObjType", adInteger, adParamInput, , 1)

‘The actual ID you want to associate with this user

 oCommand.Parameters.Item("@strAltID") = oCommand.CreateParameter("strAltID", adVarChar, adParamInput, , Trim(txtNewExtension.Text))

 oCommand.Execute

There is no synchronization options for this stored procedure, however as noted above this is one of the values you need to make sure is written through to the directory. You can either call the sp_SqlDirectorySync stored procedure directly or the sp_ModifySubscriber stored procedure which takes a set of synchronization flags just as the sp_CreateSubscriber stored procedure does and is a much better choice for this since it’ll only synchronize information about the user you’re updating where as the sp_SqlDirectorySync is targeted more at batch operations where it will synch groups of users. If you’re going to be making other changes to the subscriber while you’re in ere the sp_ModifySubscriber stored procedure is an ideal choice but I’d recommend using it regardless. If you just want to kick of a sync for the user, the code would look like this:

 oCommand.CommandText = "sp_ModifySubscriber"

 oCommand.Parameters.Item("@SubscriberObjectID") = oCommand.CreateParameter("SubscriberObjectID", adGUID, adParamInput, , strSubscriberObjectID)

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 1)

 'We want to pass in a sync mask that synchs the just the subscriber here. That's a value of 1 which is the default but it’s always good to pass it in explicitly anyway.

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 1)

 'We need to create a GUID that we can pass into the stored proc such that we can look for it in the DirectorySyncTicket table in SQL which is used to pass back the results of this sync - we have to use an asynchronous process here since the synch with AD can take a while and doing a blocking call for such things is not a good idea. See below where we wait for the ticket to get inserted into the table and let us know how things went. If you don't pass a synch ticket here, no record is created in the DirectorySyncTicket table.

 strSyncTicket = generateDirectorySyncTicket()

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

 'Let the stored procedure call rip.

 oCommand.Execute

You can then wait for the ticket to be inserted into the DirectorySyncTicket table just as we did in the Create Subscriber section above by using the WaitforSyncToFinish. Yes, the chances of a sync failure here are much less likely than in creating or importing subscribers but if there are problems with the directory connection or the rights of the directory facing account for the Unity services or the like, this can fail on you so it’s always a smart move to be good citizens and make sure your directory write went through went OK.

Update everyone’s “7” key rule to go directly to the opening greeting

Let’s just make up a goofy example here. Say for instance your company has decided that they want the “7” user input key on all subscribers (not application call handlers) configured to go to the opening greeting. You could, of course, apply this same process to setting subscriber’s 0 keys to map to local area operators for groups of users or similar types of user input settings. We’ll be grabbing the CallHandlerObjectID for the opening greeting and then using that value to update the by now familiar set of Action, Conversation and Destination settings for the “7” user input key on each subscriber in the system. The code for this follows:

Dim rsMenuEntries As New ADODB.Recordset

Dim rsTemp As New ADODB.Recordset

Dim strSQL As String

Dim strOpeningGreetingObjectID As String

Dim oCommand As ADODB.Command

 ‘First, try to find the opening greeting call handler by its alias. This call handler should always be there, if it’s not the system will likely have all kinds of interesting problems.

strSQL = "SELECT CallHandlerObjectID FROM CallHandler WHERE Alias='OpeningGreetingch'"

‘if the opening greeting call handler can’t be found, exit out of the function

rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

If rsTemp.RecordCount <> 1 Then

 MsgBox "Error could not find opening greeting call handler by alias"

 Exit Sub

End If

‘Grab the CallHandlerObjectID off the opening greeting call handler – we’ll be using this value to update the menu entry values for all the subscribers later.

strOpeningGreetingObjectID = rsMenuEntries("CallHandlerObjectID")

‘This query will snag all the subscriber’s user input keys for the “7” key. Remember to be a good SQL citizen and only get the columns we need for this operation.

StrSQL=” SELECT vw_MenuEntry.MenuEntryObjectID

FROM vw_MenuEntry INNER JOIN vw_CallHandler

ON vw_CallHandler.CallHandlerObjectID=vw_MenuEntry.ParentObjectID

INNER JOIN vw_Subscriber

ON vw_Subscriber.CallHandlerObjectID=vw_CallHandler.CallHandlerObjectID

WHERE vw_MenuEntry.Alias='7'”

‘We’ll be using stored a stored procedure for updating the values on the user input table so we’ll be opening this recordset as read only.

rsMenuEntries.CursorLocation = adUseClient

rsMenuEntries.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

‘Setup the command connection for the stored procedure we’ll be using to update the menu entry rows.

Set oCommand = New ADODB.Command

oCommand.ActiveConnection = strConnectionString

oCommand.CommandType = adCmdStoredProc

oCommand.CommandText = "sp_ModifyMenuEntry"

‘Now iterate through all the rows in the table and update the Menu Entry value as needed.

rsMenuEntries.MoveFirst

Do While rsMenuEntries.EOF = False

 ‘Pass in the ObjectID of the menu entry row we want to update

 oCommand.Parameters.Item("@MenuEntryObjectID") = oCommand.CreateParameter("MenuEntryObjectID", adGUID, adParamInput, , rsMenuEntries("MenuEntryObjectID"))

 ‘The “goto” action is 2 – check CUDLE for other otpions

 oCommand.Parameters.Item("@Action") = oCommand.CreateParameter("Action", adInteger, adParamInput, , 2)

 ‘Setting the conversation name to PHTransfer here sends the caller to contact rules (transfer rules) for the openeing greeting call handlers. By default the openeing greeting doesn’t have any transfer rules enabled but if you decided later to do that you could.

 oCommand.Parameters.Item("@ConversationName") = oCommand.CreateParameter("ConversationName", adVarChar, adParamInput, , "PHTransfer")

 oCommand.Parameters.Item("@DestinationObjectID") = oCommand.CreateParameter("DestinationObjectID", adGUID, adParamInput, , strOpeningGreetingObjectID)

 ‘The Object type for a call handler is 3. Check CUDLE for more details.

 oCommand.Parameters.Item("@DestinationObjectIDType") = oCommand.CreateParameter("Action", adInteger, adParamInput, , 3)

 ‘Let the stored procedure fly. There’s no sync required for this and no need to check to see if it “worked”, just move right on to the next item.

 oCommand.Execute

 rsMenuEntries.MoveNext

Loop

Of course in a production application you’d want some sort of logging function and a nice progress indicator for your always-stressed-out users and good stuff like that. However what you’re looking at here is the basic engine behind applications such as BulkEdit.

Update subscriber’s password

Setting the password is easy going through the stored procedure since it will take care of hashing your raw phone password into an MD5 string for you on the back end. MD5 strings should always be exactly 32 characters here. Since phone passwords can only be 20 digits in length, the stored procedure assumes that if the string is 32 characters long it’s already been hashed into an MD5 string and will pass it through directly. Otherwise it’ll hash it for you on the back end so you can simply pass through the raw digits for the phone password you want to set and it’ll take care of it for you. If you’re paranoid you can also hash the phone password into it’s MD5 string and then pass that into the stored procedure instead. It’ll handle it either way.

When setting the password for a subscriber it’s up to you to be sure it complies with the password policy for the site. If you pass in a blank string for the password, for instance, the phone password will be cleared. You can check the phone password policies in the PwPolicy table in UnityDB. The stored procedure does not do any enforcement of the site’s policy, so make sure you’re careful here.

 oCommand.CommandText = "sp_ModifySubscriber"

 oCommand.Parameters.Item("@SubscriberObjectID") = oCommand.CreateParameter("SubscriberObjectID", adGUID, adParamInput, , strSubscriberObjectID)

 'The phone password is passed in as clear text in this example - it gets crunched and encrypted by the SP during the subscriber update process. You can pass in a “pre hashed” MD5 string yourself – if the string is exactly 32 characters long the stored proc will pass it through “as is”.

 oCommand.Parameters.Item("@PWDTMF") = oCommand.CreateParameter("PWDTMF", adVarChar, adParamInput, , txtPhonePassword.Text)

‘Passwords are not written through to the directory, no need to synch.

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 0)

 'Let the stored procedure call rip.

 oCommand.Execute

Since phone passwords are not pushed into the directory there’s no need to issue a synchronization request for this. You’re done.

Update the Error Greeting to Go back to itself

Just because it’s the ugly duckling here without a stored procedure to work with, we’ll cover editing the greeting for a subscriber such that the Error greeting is configured to loop back to itself instead of going to the opening greeting which is the default behavior. This means that if a user is listening to a greeting for that subscriber and “fat fingers” an entry, they’ll hear the usual “I’m sorry, I did not hear that entry” system greeting but will then hear the subscriber’s greeting start over instead of being tossed to the opening greeting call handler.

Say for instance we wanted to change the error greeting here for the Example Subscriber account. We’d construct an SQL Query that snagged the items we needed to update from their Error messaging rule along with the CallHandlerObjectID for the primary call handler associated with that subscriber. The messaging rules reference the primary call handler of a subscriber as their parent, not the subscriber itself.

StrSQL=”SELECT vw_CallHandler.CallHandlerObjectID, vw_MessagingRule.Action, vw_MessagingRule.ConversationName, vw_MessagingRule.DestinationObjectID, vw_MessagingRule.DestinationObjectIDType

FROM vw_CallHandler INNER JOIN vw_Subscriber

ON vw_Subscriber.CallHandlerObjectID=vw_CallHandler.CallHandlerObjectID

INNER JOIN vw_MessagingRule

ON vw_MessagingRule.ParentObjectId=vw_CallHandler.CallHandlerObjectID

WHERE vw_Subscriber.Alias='esubscriber' AND vw_MessagingRule.Alias='Error'”

Set rsGreetings New ADODB.Recordset

rsGreetings.CursorLocation = adUseClient

rsGreetings.Open strSQL, strConnectionString, adOpenKeyset, adLockOptimistic

‘In this case we were looking for one specific user and if we didn’t get that, bail out.

If rsGreetings.RecordCount <> 1 Then

 MsgBox "Could not find subscriber by alias"

 Exit Sub

End If

‘You can check CUDLE for explanations for all 4 columns here. We’re going to use the “GoTo” action of 2 and send the call to the PHGreeting entry point for the primary call handler of this subscriber. The ObjectIDType for a call handler is 3.

rsGreetings("Action") = 2

rsGreetings("ConversationName") = "PHGreeting"

rsGreetings("DestinationObjectID") = rsGreetings("CallHandlerObjectID")

rsGreetings("DestinationObjectIDType") = 3

rsGreetings.Update

If you wanted to make this change for all subscribers and call handlers in your system instead of for an individual user, you could just take out the “vw_Subscriber.Alias=’esubscriber’” from the WHERE clause and get a full list of all Error greetings and then just iterate through them making the same change as above:

rsGreetings.MoveFirst

Do While rsGreetings.EOF = False

 rsGreetings("Action") = 2

 rsGreetings("ConversationName") = "PHGreeting"

 rsGreetings("DestinationObjectID") = rsGreetings("CallHandlerObjectID")

 rsGreetings("DestinationObjectIDType") = 3

 rsGreetings.Update

 rsGreetings.MoveNext

Loop

Piece of cake. Since there’s no synchronization issues with the directory for messaging rules you’re in and out pretty quick here. Just remember, when 4.0(4) hits the streets and the sp_ModifyMessagingRule stored procedure is available, you’ll want to make sure to switch over to using that.

Batch Subscriber Operations

There’s actually nothing much special about doing bulk subscriber imports, creates or edits. You can, in fact, do large numbers of all three operations using the techniques outlined above. If you call for individual user synchs to the directory on each subscriber you create, for instance, the operation wont really take any longer than if you “save up” your synch till the very end and synch everyone all at once assuming you’re moving on to the next user after creating/importing them and not waiting for their sync to complete. If you’re importing many hundreds of users at a crack you may notice a small increase in performance doing it in batch but not enough to justify using a different method just for that.

The one exception here is synchronizing public distribution lists. Unity currently does not provide a way to synch a single user into a specific distribution list or set of lists in the directory. When you select to synchronize public distribution lists when adding a subscriber to that list it does all members for the list. Worse, if you select to include distribution lists in the synch flags when adding a new subscriber to the system, it’ll synch all users for all lists. This can be very time consuming and if you issue such a request for each user you import in a large set, it may take many hours to complete all of them. This is not a good idea and if you can you should issue a single synch request for distribution lists after you’ve completed the import or creates of all subscribers in a batch to minimize this.

For adding or importing large numbers of users, doing it in batch mode does make a couple things other than the distribution list issue somewhat nicer. For instance you can provide an overall synchronization progress indicator for your users fairly easily. If you synch each individual user as you add or import them it’s up to you to maintain the table of synch tickets and know when they’re all complete and providing progress on this is tricky at best since you have to assume other folks may be requesting synch tickets for their various tasks as well.

Let’s say you’re adding a number of new users as Unity subscribers from a CSV file and having them created in the directory as well. One way to do this would be to add them to SQL and but not request a sync for each user as we did in the create subscriber example above. Simply don’t pass the DirecotrySync, DirecotrySyncFlags or DirectorySyncTicket flags into the stored procedure. Then when you’re all done adding users, issue a command to synchronize new subscribers and public distribution lists using the sp_SqlDirectorySync stored procedure. This stored procedure is nice since it provides explicit flags for indicating if you want to sync subscribers, distribution lists, new users only or the like instead of having to construct the flags manually as we do in the sp_CreateSubscriber stored procedure. The code for constructing this procedure would look like this:

 oCommand.CommandText = "sp_SqlDirectorySync"

 oCommand.Parameters.Item("@SyncSubscriber") = oCommand.CreateParameter("SyncSubscriber", adInteger, adParamInput, , 1)

 oCommand.Parameters.Item("@SyncDistributionList") = oCommand.CreateParameter("SyncDistributionList", adInteger, adParamInput, , 1)

‘This will tell the synch process to only look at rows in the subscriber table that have a NULL DirectoryId column which indicates they don’t have an object associated with them in the directory. We assume these are “new” users waiting to be created.

 oCommand.Parameters.Item("@SyncNewOnly") = oCommand.CreateParameter("SyncNewOnly", adInteger, adParamInput, , 1)

‘Again we force it to only attempt to create new users in this process. If a user with the same mail alias is encountered in the directory already, the sync of that user will fail.

 oCommand.Parameters.Item("@SyncCreateOnly") = oCommand.CreateParameter("SyncCreateOnly", adInteger, adParamInput, , 1)

‘As we did in the individual create example we generate a GUID and pass it in such that we know what ticket to look for in the DirecotyrSyncTicket table so we know when the synchronization process is complete.

 strSyncTicket = generateDirectorySyncTicket

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

You’d then execute the stored procedure and wait for the synch ticket to arrive in the DirectorySyncTicket table just as we did in the individual create example earlier in this chapter. You may want to check less aggressively since every 2 seconds is probably a little much for a large sync. Perhaps checking every 30 seconds or something in that range would be more appropriate.

So, how do you go about showing progress here while your waiting for the synch process to complete? You can’t check the progress of the distribution list sync, unfortunately, but you can see how many users have been added and how many are left to be added easily. You can do this by querying the subscriber table for the DirectoryId column being NULL or not. If a value is NULL that user has not been synch to the directory yet or it’s failed for some reason. Assuming you don’t have a significant number of users that fail the synch process you can check for how many rows have a NULL DirectoryID column and update a progress bar as you go. For example, before starting the subscriber add process, execute this query:

SELECT Count(*) FROM vw_Subscriber WHERE DirectoryID IS NULL AND SubscriberType NOT IN (0,6)

And save this number as your “base count”. There really shouldn’t be any subscribers in the table that have NULL DirectoryIDs other than the installer account (type 0) and if you get anything other than 0 here you should investigate. But be that as it may, after you finish adding users to your subscriber table issue the same query and the difference of the two values will be how many subscribers you’ve added to the table that are waiting to be synched to the directory. I assume here that your process is the only one afoot doing such adds, if that’s not a good assumption you’ll need to use a different technique here.

Once you issue the synchronization process outlined above you can periodically issue the same query and update a progress bar or a rolling counter or the like to show basic subscriber synchronization progress. As noted, however, if a user fails to synch they’re left at null so your progress may never get to 100%. Also, there is no way to check for progress on the distribution list synchronization, however the synch ticket wont show up until that’s complete so you may sit there for a while waiting for this. One way to get around this is to issue two separate sync requests. One for just subscribers where you pass in a synch ticket and wait while showing progress as discussed and another one for just distribution lists where you don’t bother to pass a synch ticket and just let it run in the background until complete.

Once the synchronization ticket for the subscriber sync shows up you can issue another query against the subscriber table and get a full list of all the users that did not get synched properly. This can be used to generate a report for the user and also for deleting those rows out of the subscriber table since you don’t want to leave unsynced users in the table sine they’re not valid subscribers. For instance this query should work nicely:

StrSQL=”SELECT Alias, DisplayName, FirstName, LastName, SubscriberObjectID FROM vw_Subscriber WHERE DirectoryID IS NULL”

RsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockOptimistic

You can then iterate through the rsTemp recordset and dump user readable information out about which users failed to synch properly and then use the sp_DeleteSubscriber stored procedure shown in the Add Subscriber example to remove these rows from the table.

When importing vs. creating new users you may be passing in the DirectoryId value to find users in the directory by which means you can’t use the NULL value in that column as we did for the create example above. Another technique is to use the ObjectChangedID value which for objects that have not been synchronized with the directory will be 0. If the value is greater than 0 you can assume the sync has taken place for that user.

For batch updates, as opposed to adds, there’s really no easy way to make a bunch of changes in SQL, issue a synchronization request and then check for progress. You just have to wait until it’s complete. When making edits in batch there’s only a couple pieces of advice I have for you. First, if you don’t have to synchronize to the directory, don’t. Keep track of what values are being edited and be smart about sending the synch flag in. Second, if you have to synchronize public distribution lists do it once at the very end of your update process. Issuing a bunch of DL sync requests over a batch operation will result in very long delays for the sync to complete.

Delete Subscriber

Compared to the complexity of creating or importing a subscriber into Unity, deleting a subscriber properly without introducing any database corruption in the form of broken links is an order of magnitude higher on the difficulty scale. It demands you understand all the ways objects in Unity can reference a subscriber and how to accommodate the fact the subscriber is going away. The really tricky part is collecting information about what to do with these references. For instance if a subscriber is the owner and message recipient on a number of call handlers, you have to replace that with another valid subscriber or distribution list or you’ll introduce corruption.

Yes, even the casual observer will note that the Unity web based system administration interface happily toasts subscribers, call handlers and other objects without a care in the world about the havoc that may wreak on the database. This has kept me churning out updated versions of dbWalker to help find and patch up these links. The Global Subscriber Manger does provide for deleting users from Unity without potentially breaking such links but folks in the field don’t tend to use that capability a lot either because they prefer the web interface or they don’t realize the capability is there. There are a lot of reasons why the SA is in the condition it is now, but mostly it’s a result of the fact that it was built on top of Unity 2.x which did not have a relational database under it at the time and so the job of rummaging through the database and finding all references to an object was slow and painful. The SA was not redesigned when the Unity back end went to SQL and now looks a little silly around the edges for such things. The administration interface is undergoing a major rearchitecture to remove its dependency on the DOH, provide a much improved interface and which will hopefully support user extensible “plug in” pages so folks can do their own thing. That’s all part of project Kubrick which at the time of this writing is not execute committed and there’s no schedule in place for it. That said, it is in the works. Honest.

So why should you do a better job than the SA? Why not just blow away the subscriber, call a resynch and let the chips fall where they may? Because you’re better than that. If you’re spending the time to read through this material and understand the Unity object model you’re clearly a cut above the rest. Painting with a broad brush I can say with some amount of certainty that you’re more productive, easier to work with, smarter and better looking that most of the folks you have to associate with. As a members of civilization’s top tier you have a certain responsibility to lead the way for the rest of the unwashed masses. I realize it’s a heavy burden to bear, but you’re up to the task.

So, what’s involved in this process? First and foremost it’s gathering from the user what to do with all possible references to the subscriber being removed. This extends to the removal of any object, of course, but for subscribers it’s particularly important since they can be references as message recipients. Unity will not load a call handler or interview handler that does not have a valid message recipient assigned to it even if that handler is not configured to take a message. You’ll get the ever-popular “failsafe” message that tells you to try your call again later and then dumps you to the opening greeting. Callers tend not to appreciate this behavior a whole lot and you want to avoid that in your Unity adventures. The next question, of course, is what are all the ways a subscriber can be referenced by another object? Oh, let me count the ways:

1. They can be an message recipient on a call handler or interview handler.

2. They can be an administrator (owner) on a call handler, interview handler, public distribution list or a name lookup handler.

3. The after greeting action on a messaging rule can send the caller to the removed subscriber.

4. The after message action on a call handler can send the caller to the removed subscriber

5. A menu entry key associated with a call handler or a subscriber’s primary call handler can be set to go to the greeting or transfer rule entry point for the removed subscriber.

6. The exit action from the subscriber conversation (introduced in 4.0(1)) could send the caller to the removed subscriber.

7. The four exit actions from a name lookup handler can each reference the removed subscriber.

8. A call routing rule may reference the removed subscriber

9. They could be referenced by subscriber templates for the subscriber exit destination, after message destination, after greeting destination or a caller input destination.

Dealing with all these possibilities when removing a user form the system is a daunting task. Fortunately for items 2 through 8 there is a stored procedure that simplifies the process a whole lot. For item #1 on the list there are two separate stored procedures to help you replace all owners and recipient references in the system. As for item #9, I don’t deal with it in my deletion example since it’s an extremely rare case that sites will have specific subscribers referenced as destination points in their subscriber templates. You can, of course, deal with this possibility in your applications if you like but the stored procedure mentioned above does not include templates in it’s sweep of the database.

As noted, the hard part is collecting information about what to replace links for items 1 through 8 with when removing the user. If you take a quick look at the SA you’ll see there are a lot of possibilities for setting a user input key and after message options and the like. The Global Subscriber Manager has an example of one way to approach this which is a full wizard interface that interrogates the user making the deletion about what they wish to do with each and every possible link that will break. While this is very robust it’s also a lot of work and users are less than thrilled with having to walk through this wizard each time they delete a user. You can take it a step further and “remember” the previous set of values and let the user skip the wizard, however you need to be careful that references selected by the user and saved are valid. For instance if they’ve selected a public distribution list as a replacement for the message recipient link on removed subscribers and that distribution list is removed, you need to note that and force them to select another object. Another approach is to simply hard code as many of the replacements as you can and ask only for a subscriber or distribution list as the owner and recipient replacement. For instance all one key actions that referenced the deleted subscriber could be set to “ignore”, after message actions could be set to “hang up” and the like. This is certainly easier to code and involves less dancing with the administrator but may produce less than desirable phone behavior – callers tend to frown on getting complimentary dial tone right after leaving a message when they wanted to now try another user in the system.

How you approach the “replacement information collection” issue is up to you and depends on the type of application you’re providing. An automated provisioning application that runs off scripts doesn’t have the option of asking a human such questions on the fly so you’ll end up having to go with some predefined hard coded values. Other types of tools have other options. I didn’t spend a whole lot of time in the example application here gathering information from the user. I took a bit of a “middle of the road” approach where some items were hard coded and a few items were adjustable but with a limited set of options. For instance the after message action can only be sent to a selected call handler. I did not give the full range of options available for this in an effort to keep the application as simple as possible. Given the information covered in the Object Model chapter and the data available in CUDLE you should be able to apply the full range of options to your application if that’s what you decide you want to do.

Enough with the shameless pandering and blathering preamble here. Let’s walk through part of the code found in the Delete Subscriber example application and take a look.

Private Sub DeleteSubscriber()

Dim rsCreate As ADODB.Recordset

Dim rsTemp As ADODB.Recordset

Dim oCommand As ADODB.Command

Dim strSyncTicket As String

Dim iCounter As Integer

Dim strDeletedSubscriberObjectID As String

Dim strNewOwnerRecipientObjectID As String

 Set rsTemp = New ADODB.Recordset

 'first, we need to fetch the SubscriberobjectId of the subscriber we want to delete which will get used later. The alias of the subscriber we’re about to remove is stored in the txtAlias text box on the form here.

 rsTemp.Open "select Alias, SubscriberObjectID from vw_Subscriber where Alias='" + txtAlias.Text + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount <> 1 Then

 MsgBox "Error pulling the ObjectID for the subscriber to be deleted... aborting removal"

 rsTemp.Close

 Exit Sub

 End If

 rsTemp.MoveFirst

 strDeletedSubscriberObjectID = rsTemp("SubscriberObjectID")

 rsTemp.Close

 'next we want to make sure we can get the SubscriberobjectId of the subscriber that will replace this guy as the owner and/or recipient which we'll be updating later. We do this now since it’d be a bummer to find out we can’t find this replacement user after we cleaned up other links to this user with the spPreDeleteObject stored procedure. In this sample I only allow the selection of another subscriber to replace the removed user as both owner and recipient and the alias for this replacement user is stored in the txtOwnerRecipientSubscriberAlias text box on the form.

 rsTemp.Open "select Alias, SubscriberObjectID from vw_Subscriber where Alias='" + txtOwnerRecipientSubscriberAlias.Text + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount <> 1 Then

 MsgBox "Error pulling the ObjectID for the subscriber that will be the replacement as the owner/recipient... aborting removal"

 rsTemp.Close

 Exit Sub

 End If

 rsTemp.MoveFirst

 strNewOwnerRecipientObjectID = rsTemp("SubscriberObjectID")

 rsTemp.Close

 'now we're ready to start the pre deletion activities.

 Set rsCreate = New ADODB.Recordset

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

 'first, do the pre delete actions and clean up references to this subscriber in other objects in the database before removing them such that we don't corrupt the database. Note that this stored procedure can also be used when removing other objects such as a call handler. This stored procedure handles fixing up all the links to the removed user except the owner and recipient links which we’ll deal with shortly.

 oCommand.CommandText = "sp_PreDeleteObject"

 ‘Pass in the SubscriberObjectID of the user to be removed.

 oCommand.Parameters.Item("@ObjectID") = oCommand.CreateParameter("ObjectID", adGUID, adParamInput, , strDeletedSubscriberObjectID)

 'The object type is a subscriber which is "1", you can check CUDLE for this if you forget in the future.

 oCommand.Parameters.Item("@ObjectType") = oCommand.CreateParameter("ObjectType", adInteger, adParamInput, , 1)

 'In this case we are going to set the user input keys mapped to this subscriber to "ignore". I don't give the user a choice on the form here but, of course, you can do what you like here. I'm simply hard coding the action to ignore which maps to a value of "0". Again, check CUDLE under the MenuEntry table to see what your options are here. With a value of 0 for the action the conversation name, destination object ID and the destination object ID type values are meaningless and don’t get used, however the stored procedure is still expecting them to be passed in regardless. As such we pass in some dummy values here to make it happy.
 oCommand.Parameters.Item("@CallerInputAction") = oCommand.CreateParameter("CallerInputAction", adInteger, adParamInput, , 0)

‘This value is not used in this case.

 oCommand.Parameters.Item("@CallerInputConversationName") = oCommand.CreateParameter("CallerInputConversationName", adBSTR, adParamInput, , "PHTransfer")

 'since a blank GUID is not considered valid and the stored proc requires this parameter, I'm just passing in the ObjectID of the guy we're deleting to the procedure here - this is not used by anything - this parameter should really be optional.

 oCommand.Parameters.Item("@CallerInputDestObjectID") = oCommand.CreateParameter("CallerInputDestObjectID", adGUID, adParamInput, , strDeletedSubscriberObjectID)

 'Arbitrarily pass in the type for call handler here (2) - again the stored proc demands a value here but it's not used in this case

 oCommand.Parameters.Item("@CallerInputDestObjectIDType") = oCommand.CreateParameter("CallerInputDestObjectIDType", adInteger, adParamInput, , 2)

 'For the after message action I allow the user to select a call handler - again, I don't offer a lot of options here but you can do what you like. We need to go fetch the ObjectID for the destination call handler which the user selected and has it’s alias stored in the txtCallHandlerAfterMessageAlias text box on the form.

 rsTemp.Open "SELECT Alias, CallHandlerObjectID FROM vw_CallHandler WHERE alias='" + txtCallHandlerAfterMessageAlias.Text + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount <> 1 Then

 MsgBox "Error pulling the ObjectID for the call handler destination for after message destinations... aborting removal"

 rsTemp.Close

 Exit Sub

 End If

 rsTemp.MoveFirst

 ‘Pass in the destination object ID for the after message replacement which is the call handler we just looked up.

 oCommand.Parameters.Item("@AfterMessageDestObjectID") = oCommand.CreateParameter("AfterMessageDestObjectID", adGUID, adParamInput, , rsTemp("CallHandlerObjectID"))

 rsTemp.Close

 'The AfterMessageDestObjectIDType needs to be a "2" for a call handler in this case.

 oCommand.Parameters.Item("@AfterMessageDestObjectIDType") = oCommand.CreateParameter("AfterMessageDestObjectIDType", adInteger, adParamInput, , 2)

 'The conversation name is "PHTransfer" here - to do this right you'd give them the option of attempting the transfer or going right to the greeting for the call handler in question. Defaulting to PHTransfer is generally pretty safe since the handler itself will be configured to do a transfer or not the way you want them to regardless. If you don't know what I mean by PHTransfer vs. PHGreeting you need to review the Object Model and Audio Text Applications chapters.

 oCommand.Parameters.Item("@AfterMessageConversationName") = oCommand.CreateParameter("AfterMessageConversationName", adBSTR, adParamInput, , "PHTransfer")

 'The action for this needs to be "2" for "goto" - refer to CUDLE for more details

 oCommand.Parameters.Item("@AfterMessageAction") = oCommand.CreateParameter("AfterMessageAction", adInteger, adParamInput, , 2)

 'Again, I don't give any options for the after greeting action - it's hard coded to take a message if it happened to have been set to go to the subscriber being deleted. You can, of course, go wild here. The Action for "take a message" corresponds to a value of "4". Check CUDLE under the MessagingRule table to find out what all your options for the after greeting action are. With an action of "take message" it's not necessary to fill in the AfterGreetingConversationName, AfterGreetingDestObjectID or the AfterGreetingDestObjectIDType values, however you need to pass the parameters anyway because the stored procedure expects to see them even though they don't get used.

 oCommand.Parameters.Item("@AfterGreetingAction") = oCommand.CreateParameter("AfterGreetingAction", adInteger, adParamInput, , 4)

‘This value is not used in this case since an action of 4 does not use a conversation

 oCommand.Parameters.Item("@AfterGreetingConversationName") = oCommand.CreateParameter("AfterGreetingConversationName", adBSTR, adParamInput, , "PHTransfer")

 'since a blank GUID is not considered valid and the stored proc requires this parameter, I'm just passing in the ObjectID of the guy we're deleting to the procedure here - this is not used by anything - this parameter should really be optional.

 oCommand.Parameters.Item("@AfterGreetingDestObjectID") = oCommand.CreateParameter("AfterGreetingDestObjectID", adGUID, adParamInput, , strDeletedSubscriberObjectID)

 'Arbitrarily pass in the type for call handler here (2) - again the stored proc demands a value here but it's not used in this case

 oCommand.Parameters.Item("@AfterGreetingDestObjectIDType") = oCommand.CreateParameter("AfterGreetingDestObjectIDType", adInteger, adParamInput, , 2)

 'I lumped the subscriber exit destination and the name lookup handler exit destinations into one option and it's forced to go to a call handler to simplify things here. First we need to get the objectId of the call handler the user has selected as the alternative destination. It’s alias is stored in the txtCallHandlerAfterMessageAlias text box on the form.

 rsTemp.Open "SELECT Alias, CallHandlerObjectID FROM vw_CallHandler WHERE alias='" + txtCallHandlerAfterMessageAlias.Text + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount <> 1 Then

 MsgBox "Error pulling the ObjectID for the call handler target for the exit destinations on subscribers and name lookup handlers... aborting removal"

 rsTemp.Close

 Exit Sub

 End If

 rsTemp.MoveFirst

 ‘Pass the CallHandlerObjectID we just grabbed into the stored procedure as both the name lookup handler exit destination and the subscriber exit destination object Ids.

 oCommand.Parameters.Item("@SubExitObjectID") = oCommand.CreateParameter("SubExitObjectID", adGUID, adParamInput, , rsTemp("CallHandlerObjectID"))

 oCommand.Parameters.Item("@NameLookupHandlerExitObjectID") = oCommand.CreateParameter("NameLookupHandlerExitObjectID", adGUID, adParamInput, , rsTemp("CallHandlerObjectID"))

 rsTemp.Close

 'again we're forcing a call handler here and the objectType for that is "2"

 oCommand.Parameters.Item("@SubExitObjectIDType") = oCommand.CreateParameter("SubExitObjectIDType", adInteger, adParamInput, , 2)

 oCommand.Parameters.Item("@NameLookupHandlerExitObjectIDType") = oCommand.CreateParameter("NameLookupHandlerExitObjectIDType", adInteger, adParamInput, , 2)

 'again, we'll assume the PHTransfer entry point here instead of the PHGreeting.

 oCommand.Parameters.Item("@SubExitConversationName") = oCommand.CreateParameter("SubExitConversationName", adBSTR, adParamInput, , "PHTransfer")

 oCommand.Parameters.Item("@NameLookupHandlerExitConversationName") = oCommand.CreateParameter("NameLookupHandlerExitConversationName", adBSTR, adParamInput, , "PHTransfer")

 'The action for all transfers is "2" for goto - again, refer to CUDLE for help here.

 oCommand.Parameters.Item("@SubExitAction") = oCommand.CreateParameter("SubExitAction", adInteger, adParamInput, , 2)

 oCommand.Parameters.Item("@NameLookupHandlerExitAction") = oCommand.CreateParameter("NameLookupHandlerExitAction", adInteger, adParamInput, , 2)

 'OK, let's let the PreDelete procedure rip.

 rsCreate.CursorLocation = adUseClient

 rsCreate.Open oCommand, , adOpenDynamic, adLockOptimistic

 'the rsCreate recordset now contains a list of all the objects that were changed as part of this procedure. If you want to get fancy you can generate a report based on this information. I'm not getting fancy here so we're moving on.

 rsCreate.Close

 'We now need to make sure we change any call handler, interview handler or distribution list that's setup with their owner and/or recipient properties pointing at the subscriber we’re going to remove. We'll replace references to this subscriber with the subscriber selected on the form that we looked up earlier in this routine. We need to use the sp_ChangeOwner and sp_ChangeRecipient stored procs for this.

 oCommand.CommandText = "sp_ChangeOwner"

 oCommand.Parameters.Item("@PrevOwnerObjectID") = oCommand.CreateParameter("PrevOwnerObjectID", adGUID, adParamInput, , strDeletedSubscriberObjectID)

 oCommand.Parameters.Item("@NewOwnerObjectID") = oCommand.CreateParameter("NewOwnerObjectID", adGUID, adParamInput, , strNewOwnerRecipientObjectID)

 'since we're hard coding this to only allow a subscriber to be the replacement we pass in a "1" as the type here. If you were allowing a public distribution list as a replacement you’d use a value of 2 here.

 oCommand.Parameters.Item("@NewOwnerObjectIDType") = oCommand.CreateParameter("NewOwnerObjectIDType", adInteger, adParamInput, , 1)

 'execute the stored procedure

 rsCreate.CursorLocation = adUseClient

 rsCreate.Open oCommand, , adOpenDynamic, adLockOptimistic

 'The rsCreate recordset now contains a list of all the handlers updated by the stored proc. You can include this in a reporting option for your tools if you like. We're keeping this simple so I'm not going to go that route, we'll just move on.

 rsCreate.Close

 'now change the recipient in the same way we did the owner.

 oCommand.CommandText = "sp_ChangeRecipient"

 oCommand.Parameters.Item("@PrevRecipientObjectID") = oCommand.CreateParameter("PrevRecipientObjectID", adGUID, adParamInput, , strDeletedSubscriberObjectID)

 oCommand.Parameters.Item("@NewRecipientObjectID") = oCommand.CreateParameter("NewRecipientObjectID", adGUID, adParamInput, , strNewOwnerRecipientObjectID)

 'since we're hard coding this to only allow a subscriber to be the replacement we pass in a "1" as the type here

 oCommand.Parameters.Item("@NewRecipientObjectIDType") = oCommand.CreateParameter("NewRecipientObjectIDType", adInteger, adParamInput, , 1)

 'execute the stored proc.

 rsCreate.CursorLocation = adUseClient

 rsCreate.Open oCommand, , adOpenDynamic, adLockOptimistic

 'Again, the rsCreate recordset contains a list of all the handlers updated by this stored proc which you can use for a reporting function here if you like.

 rsCreate.Close

 'now that we have the pre delete activity complete we can delete the subscriber themselves without worrying about causing any kind of broken links or other problems in the database unless the site is completely weird and has referenced this subscriber in their subscriber templates for whatever reason.

 oCommand.CommandText = "sp_DeleteSubscriber"

 oCommand.Parameters.Item("@SubscriberObjectID") = oCommand.CreateParameter("SubscriberObjectID", adGUID, adParamInput, , strDeletedSubscriberObjectID)

 'You definitely want to tell the stored procedure to synchronize SQL to the directory for this subscriber after deleting them so you should pass a 1 in here. There's really no valid reason not to pass this in, frankly, but it's an optional parameter nonetheless. If you don’t pass this flag in the user will be removed from Unity’s database but will still be “stamped” as a subscriber in the directory and you will not be able to import them as a subscriber on any Unity server in the directory.

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 1)

 'We want to pass in a sync mask that syncs the subscriber info back to the directory. You have the option of removing the subscriber from the directory if your back end is Exchange 55 or Exchange 2000 here. If the user has checked that option on the form you want to pass in 0x50000000 + 0x00000001 = 1342177281 decimal. If this option is not checked, just you need to pass in 0x20000000 + 0x00000001 = 536870913. You can also simply pass the “ForceRemove” flag into the stored procedure which will simply “or” in the 0x50000000 for you rather than making you do all that complicated math on your own. You must be extremely careful with this option! The SA does not offer this option for a very good reason. Folks get real annoyed if you blow away their directory and messaging accounts by accident so make sure you know what you’re doing with this.

 If Me.chkRemoveMailbox.Value = vbChecked Then

 'pass the synch flags to remove the user from the directory and blow away their mailstore account as well.

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 1342177281)

 Else

 'pass the sync flags to remove just the subscriber properties from the user in the directory. This should definitely be the default option.

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 268435457)

 End If

 'We need to create a GUID that we can pass into the stored proc such that we can look for it in the DirectorySyncTicket table in SQL which is used to pass back the results of this sync - we have to use an asynchronous process here since the synch with AD can take a while and doing a blocking call for such things is not a good idea. See below where we wait for the ticket to get inserted into the table and let us know how things went. If you don't pass a synch ticket here, no record is created in the DirectorySyncTicket table.

 strSyncTicket = generateDirectorySyncTicket

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

 'Let the stored procedure call rip.

 rsCreate.CursorLocation = adUseClient

 rsCreate.Open oCommand, , adOpenDynamic, adLockOptimistic

 ‘As we’ve done earlier, we need to wait for the sync to complete and check the results. You can check the code for the WaitForsyncToFinish in the Add Subscribers example.

If WaitForSyncToFinish (strSyncTicket) = False Then

 MsgBox “Synch to directory failed during subscriber removal. Check the SQLSyncSvr logs in \Commserver\Logs for more details”

Else

 MsgBox "Subscriber removed"

End If

BailOut:

 ‘Clean up a little on the way out.

 Set rsCreate = Nothing

 Set oCommand = Nothing

End Sub

Remove Unity Properties from an AD object

I’ve had a number of folks ask how they can automate the “cleaning” process for users in Active Directory when, for instance, a Unity server was removed from the network without uninstalling it properly first. This “strands” users in the directory since they are stamped as Unity subscribers and other Unity servers will not allow you to import them. I should note here that using the sp_CreateSubscriber to import these users will let you do that – the stored procedure does not check to see if the user you identified is a subscriber already or not. This is why DiRT restores work when you reinstall a Unity server that’s crashed into a directory with subscribers in the directory still.

However, if you need to clean the user of Unity properties you can do this fairly easily using code that looks a lot like navigating around databases. The Active Directory services can be bound to using ADO in much the same way you can bind to SQL. There are certainly other ways to find your way around AD and update objects and the like, however this is by far the easiest I’ve encountered. For this to fly, it requires you include the “Active DS Type Library” in your VB project which will give you the ADSI interface plumbing you need.

The first thing we need is to connect to the “root” of the Active Directory domain such that we can then find folders/users in that container and move down through the tree. The root container can be fetched using the “RootDSE” keyword in your query. You could go out and find your domain controller and build this yourself but it’s easy to just ask AD to tell you what default domain you’re running in just now.

Dim sContext As String

Dim rootDSE As IADs

 'Get the rootDSE. This is basically the default container for the domain. It'll look something like this: "LDAP://DC=AnswerMonkey,DC=net".

 Set rootDSE = GetObject("LDAP://RootDSE")

 sNamingContext = "LDAP://" & rootDSE.Get("defaultNamingContext")

the sContext string will now contain a string you can use to go fetch users in containers of your choice. Now that you have the path to the root container, you can go build a recordset of all the user and/or containers in that container.

Dim con As New Connection

Dim rs As New Recordset

Dim sFilter As String

Dim sLdapQuery As String

 'Open the connection using the special Active Directory connection string.

 con.Provider = "ADsDSOObject"

 con.Open "Active Directory Provider"

 'Build the query. In this case we're only interested in seeing users in the container in question, not all the other stuff that you find handing out in an Active Directory container.

 sFilter = "(objectClass=User)"

 'If the user has opted to only see subscribers, include a filter that will only show users that have the ciscoECSBUUMLocationOBjectID value on them. Otherwise leave the filter off and all user objects will be returned. If a user in the directory does not have a location object Id associated with them, we assume they are non Unity subscribers.

 If bShowAllUsers = False Then

 sFilter = "(&" & sFilter & "(ciscoEcsbuUMLocationObjectId=*)" & ")"

 End If

 ‘Remember the sContext string constructed from the RootDSE above looks something like “LDAP://DC=AnswerMonkey,DC=net”

 sLdapQuery = "<" & sContext & ">;" & sFilter & ";AdsPath,cn;onelevel"

 'Get the users from the query into a nice recordset

 Set rs = con.Execute(sLdapQuery)

At this point you have a list of all users in the container – you probably don’t have users in the root container, however, so the recordset is likely empty. You adjust this by adding to the sContext string either on your own if you know the container you want to see or you can build it dynamically and do the tree control navigation thing by getting all the containers in the current container and letting the user navigate down to the point where they want to go. The query to get containers is very similar to the one to get users, you just provide a different filter.

 'Build the query. We're only interested in seeing OUs and containers here so filter everything else out or else it'll show a huge clutter of stuff we don't want to see.

 sFilter = "(|(objectClass=organizationalUnit)(objectClass=container))"

 sLdapQuery = "<" & sContext & ">;" & sFilter & ";AdsPath,cn;onelevel"

 'Get the result record set which contains all the containers and OUs in the passed in container

 Set rs = con.Execute(sLdapQuery)

The recordset now contains all the containers found in the container path you passed it using the sContext string. To navigate to a sub container you just need to adjust the sContext string and reload the users and or containers in that container and so on. To do this all you need to do is iterate through the recordset returned and assign the “ADSPath” column value as desired. You can assign this to an Active Directory object and get at the GUID, class, path, name, parent and schema values on that node in AD if you wish. For instance if you had the above container recordset positioned on the Users container off the root you could do this:

Dim adsContainer As IADs

 Set adsContainer = GetObject(rs.(“ADSPath”))

MsgBox adsContainer.ADSPath

MsgBox adsContainer.Name

The first message box would spit out something like this “LDAP://OU=Users,OU=Unity,DC=AnswerMonkey,DC=com” and the second message box would show simply “CN=Users”.

Using this mechanism you can easily build a tree control to let users navigate around the directory which is, in fact, exactly what the Remove Subscriber Properties example project does.

Once you’ve found the user you want to clean, you need to remove two properties from that object such that they can be imported into another Unity server: the ciscoEcsbuUMLocationObjectId and ciscoEcsbuObjectType properties. The sAdsPath used here is an LDAP string that identifies the user in the directory similar to what we used above. It'll look something like this: "LDAP://CN=JLindborg,CN=Users,DC=AnswerMonkey,DC=net". You can get it in the same way we got the ADSPath on the container above, by iterating through the recordset created with the users filter and populating a list for users to choose from or constructing it manually or whatever works for you.

Dim unityUser As IADs

 Set unityUser = GetObject(sAdsPath)

 unityUser.PutEx ADS_PROPERTY_CLEAR, "ciscoEcsbuUMLocationObjectId", vbNull

 unityUser.PutEx ADS_PROPERTY_CLEAR, "ciscoEcsbuObjectType", vbNull

 unityUser.SetInfo

At this point the Active Directory user is now “clean” and can be imported into any Unity server in the directory.

Adding a new public distribution list

A couple of important notes about working with distribution lists here before we dive into the code example. First, the stored procedures for dealing with public distribution lists were not added and working properly until the release of Unity 4.0(3). If you’re running 4.0(2) or earlier you will not be able to create or remove distribution lists or add members to lists using SQL.

When I’m talking about “public distribution lists” I’m referring to “system distribution lists” that were dicussed in the Data Object Model chapter as opposed to the “scope distribution lists” that are used to bound user lists for the name lookup handlers. The csp_DistributionListCreate stored procedure discussed here can be used to either create a brand new distribution list or to import an existing distribution list from the directory.

The distribution lists stored procedures will all work with Exchange 5.5, 2000, 2003 and Domino, however there’s a few things to keep in mind:

In AD (Exchange 2000,2003) new lists are created as new universal distribution lists in the container you selected in AD during the Unity installation. The account associated with the directory facing services must have rights to create distribution lists so if you restricted such rights during the installation of Unity you’ll need to re run the permissions wizard and grant such rights or these scripts will fail, of course. When importing lists in AD you can include universal (distribution) or security groups, both will work just fine. When importing lists in AD you use the directory ID value from the object which corresponds to the ObjectGUID field. You need to convert this into a usable string which we covered in the Importing a Subscriber example earlier.

In the case of Domino new lists are created as Multipurpose groups. When importing with Domino, be sure to only import either Multipurpose or Mail groups. If you import an Access Control, Deny Access or Servers type group, strange things will happen since you can’t send mail to those types of groups. Don’t do that. When importing a list from Domino, pass in the value from the Unique Identifier (UUID) field into the DirectoryId parameter and you’re good to go.

The keen observer will notice that there are stored procedures for creating scope distribution lists and adding members to them as well, however you’ll also notice they lack many of the features found in the system distribution list procedures, most notably the directory syncronization flags. These scope distribution lists are, at the time of this writing, intended only for internal use by the directory monitors and should be avoided until they’re cleaned up and ready for prime time.

OK, on with the exercises here. The creation of a new distribution list here is actually pretty easy. You only need to provide a display name, alias and the ObjectID of a subscriber or distribution list to act as the “owner” for the list. You can optionally pass in an extension as wel, but it’s not required. If you’re importing an existing distribution list from the directory you only need to pass in the DirectoryID and alias of that list as well as providing the ObjectID of the owner you’re good to go. You can refer back to the importing subscribers example to see how to pull directory ID values off objects in the directory if you like, we’ll only be covering the creation of a new list here.

'add a new public distribution list to the system

Private Sub cmdCreateList_Click()

Dim strDLAlias As String

Dim strDLDisplayName As String

Dim strAdministratorObjectID As String

Dim oCommand As ADODB.Command

Dim strSyncTicket As String

Dim rsTemp As ADODB.Recordset

Dim strText as String

 'Collect the display name of the distribution list to be added. Since this is the string used to identify distribution lists in the SA interface you need to make sure it’s unique. While not necessary from a database perspective, presenting the user with multiple lists named the same thing and expecting them to select the right one is not terribly friendly.

 strDLDisplayName = InputBox("Enter display name for new public distribution list", "Enter distribution list display name")

 'if the display name is empty bail out. We'll limit the display name here to 40 characters since the SA limits the input of the display name for DLs to 40 characters as well - this should be sufficient for our purposes here.

 If Len(strDLDisplayName) = 0 Then

 Exit Sub

 ElseIf Len(strDLDisplayName) > 40 Then

 MsgBox "Easy there Tex. Keep the display name under 40 characters please."

 Exit Sub

 End If

 'Check to see if the display name is unique - technically the display name doesn't have to be unique but the SA only shows the display name as a selection criteria and there'd be no way to distinguish the lists apart - as such we'll enforce uniuqueness here.

 Set rsTemp = New ADODB.Recordset

 rsTemp.CursorLocation = adUseClient

 rsTemp.Open "SELECT Alias, DisplayName FROM vw_DistributionList WHERE DisplayName='" + strDLDisplayName + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount > 0 Then

 MsgBox "That display name conflicts with one or more public distribution lists already in the database. Please select a unique display name."

 rsTemp.Close

 GoTo CleanUp

 End If

 rsTemp.Close

 'Generate an Alias from the display name - the SQL Syncher will tack on the system ID of the local Unity install for this so as long as the alias is unqiue within the set of public DLs we know about in SQL you can be pretty sure the alias is unqiue in the directory - if you want to be extra sure you can tack on the number of seconds since midnight on 1/1/2000 or something but it shouldn't be necessary. Regardless, if the alias is not unique the stored procedure will fail and return to you a description to that effect so it wont be the end of the world regardless.

 strDLAlias = Replace(strDLDisplayName, " ", "_")

 'We could get pretty sophisticated and involved checking for illegal characters in the display name, however I’m going to be heavily draconian here and only allow characters, letters, spaces and underscores. If you want to get fancy and let your users add various special characters (making sure you account for the differences in Exchange 5.5 and AD and Domino here) you can go wild. I leverage the handy “Like” operator here to evaluate the string quickly in one shot. I first remove the underscores from the alias here to make this easier and since the spaces were removed when constructing the alias we only need to check that all characters are letters or numbers here.

 strText=Replace(strDLAlias,”_”,””)

 If strText Like "*[!0-9,!a-z,!A-z]*" Then

 MsgBox "The display name can contain only spaces, letters, numbers and underscores. No other characters are allowed"

 Goto CleanUp

 End If

 'Finally, force the user to select a subscriber to act as the owner/administrator for this list. At this time this value is not actually used for anything other than display purposes in the SA - however eventually it will be and it's considered a database inconsistency if it's not set properly. You could also allow the user to select a distribution list for this, of course, but for our purposes here we’ll just use a subscriber. The frmSubscriberSearch form exposes 3 public variables that include the ObjectId of the subscriber selected, their display name and a bCancelHit Boolean that indicates the user exited out of the form without selecting a user.

 frmSubscriberSearch.Show vbModal

 'yeah, this isn't the greatest user interface in the world but hey... for a production appliction I'd probably put this on a seperate form such that the display name and administrator and possibly an optional extension could be entered and checked seperately - for our purposes here, however, the user is just going to take it in the shorts if they screw up here and they'll have to start again.

 If frmSubscriberSearch.bCancelHit or Len(frmSubscriberSearch.strObjectID) = 0 Then Then

 MsgBox "You must select a subscriber to act as the administrator for the new list... please try again."

 GoTo CleanUp

 Else

 strAdministratorObjectID = frmSubscriberSearch.strObjectID

 End If

 'force a redraw of the main form and then put the mouse into "I'm working on it" mode. For a production application I'd probably float a splash screen to the top indicating the DL was being created or the like - but for our purposes here this is fine.

 frmMain.Refresh

 frmMain.MousePointer = vbHourglass

 DoEvents

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

 'OK, we have everything we need - the alias and display name of the DL to create and the ObjectId of the subscriber that will act as the administrator - let's create the new DL.

 oCommand.CommandText = "csp_DistributionListCreate"

 oCommand.Parameters.Item("@Alias") = oCommand.CreateParameter("Alias", adVarChar, adParamInput, , strDLAlias)

 oCommand.Parameters.Item("@DisplayName") = oCommand.CreateParameter("DisplayName", adVarChar, adParamInput, , strDLDisplayName)

 oCommand.Parameters.Item("@AdministratorObjectID") = oCommand.CreateParameter("AdministratorObjectID", adGUID, adParamInput, , strAdministratorObjectID)

 'tell the SQLSyncher to push this new DL into the directory. The synch Flag of 2 means just distribution lists here, of course. It’s the default value and it’s not strictly necessary to pass it in here but whenever forcing a synch I like to be explicit about the flags regardless.

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 1)

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 2)

 'We need to create a GUID that we can pass into the stored proc such that we can look for it in the DirectorySyncTicket table in SQL which is used to pass back the results of this sync

 strSyncTicket = generateDirectorySyncTicket

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

 'Let the stored proc fly.

 oCommand.Execute

 'wait for sync process to complete. This is the same generic synch ticket wait routine used in the subscriber add routine, you can check the code details there if you like.

 If WaitForSyncToFinish(strSyncTicket) = False Then

 MsgBox "SQL Sync to directory failed when adding new distributionlist" + vbCrLf + "You can check the SQLSyncSvr logs in the \commserver\logs directory for more details"

 Else

 MsgBox "The directory sync is complete for new distribution list"

 End If

 frmMain.MousePointer = vbDefault

CleanUp:

 'close out the recordsets and exit

 On Error Resume Next

 rsTemp.Close

 Set rsTemp = Nothing

 Set oCommand = Nothing

End Sub

Removing an existing public distribution list

Removing a public distribution list is very similar to removing a subscriber, however the potential for creating broken links in the database as a result of it’s removal is considerably more limited. You do still need to worry about removing a list that is set as an owner or a message recipient of a handler and replacing the list you’re removing with another user or list but that’s about it. No other references to a public distribution list are allowed.

You have the option of either removing just the Unity properties off a distribution list and leaving it in the directory or using the “force remove” flag on the directory syncronization options to delete the object in the directory entirely. This is very similar to removing subscribers discussed earlier, however there’s an important difference for public distribution lists that should be noted here. Unlike subscribers, distribution lists can be “shared” across multiple Unity servers that are installed into the same directory. As such if you remove a distribution list from the directory entirely or just remove the Unity properties off of it you can actually be yanking it out of other Unity servers. Once a distribution lists has it’s Unity properties removed, all Unity servers will drop that list out of it’s local database of system distribution lists (as noted earlier that’s not the case for scope distribution list references). There’s no real easy way to tell what other Unity servers in the directory may be affected by this (i.e. which servers may have used that distribution list as an owner/recipient on a handler object) other than connecting to each one remotely and checking. Not ideal. It’s pretty unusual to delete distribution lists programmatically but just in case you find yourself in such a situation we’ll cover the high points here.

The first thing to do is to go through the “pre delete” steps to see if any objects on the local Unity server are using this distribution list as an owner and/or message recipient and to provide a suitable replacement object. You can use the sp_ChangeOwner and sp_ChangeRecipient stored procedures to do this as was discussed in the Delete Subscriber example discussed earlier in this chapter. Once you’ve taken care of any potential reference issues there, the process of removing the distribution list is straight forward.

'Delete the distribution list currently selected in the listDLs list box on the form.

Private Sub cmdDeleteList_Click()

Dim oCommand As ADODB.Command

Dim strSyncTicket As String

Dim rsTemp As ADODB.Recordset

 'verify that the user wishes to delete this distribution list

 If MsgBox("Are you sure you want to delete the selected distribution list?", vbYesNo) = vbNo Then

 Exit Sub

 End If

 Set rsTemp = New ADODB.Recordset

 rsTemp.CursorLocation = adUseClient

 'we need to pass the SystemDListOBjectId of the selected distribution list into the stored procedure for deletion - as such we'll need to find this record in SQL to fetch that data.

 rsTemp.Open "SELECT SystemDListObjectID, Alias FROM vw_DistributionList WHERE Alias='" + listDLs.Text + "'", strConnectionString, adOpenKeyset, adLockReadOnly

 'really none of the 3 error conditions would happen in a typical system but hey... can't be too careful.

 If rsTemp.RecordCount = 0 Then

 MsgBox "Unable to find distribution list by the selected alias."

 GoTo CleanUp

 ElseIf rsTemp.RecordCount > 1 Then

 MsgBox "More than one match for in the distribution list table for the selected alias."

 GoTo CleanUp

 End If

 If IsNull(rsTemp("SystemDListObjectID")) Then

 MsgBox "The SystemDListObjectId property for the selected distribution list is NULL."

 GoTo CleanUp

 End If

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

 'OK, we have the ObjectID of the distribution list to delete which is all we need here.

 oCommand.CommandText = "csp_DistributionListDelete"

 oCommand.Parameters.Item("@SystemDListObjectID") = oCommand.CreateParameter("SystemDlistObjectID", adGUID, adParamInput, , rsTemp("SystemDListObjectID"))

 'tell the SQLSyncher to push this change into the directory of course. The “2” for the synch flags here tells the syncher to only work with the DL – which in this case is really the only flag that make sense. It’s the default if you don’t pass anything in but it’s good to be explicit anyway.

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 1)

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 2)

 'NOTE - we COULD pass in a ForceRemove flag set to 1 here to make the directory monitor remove the distribution list from the directory as well but for this example I just remove it from Unity which will also clean the Unity properties off the list in the directory. As such you can import it again later.

 'We need to create a GUID that we can pass into the stored proc such that we can look for it in the DirectorySyncTicket table in SQL which is used to pass back the results of this sync

 strSyncTicket = generateDirectorySyncTicket

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

 'Let the stored proc fly.

 oCommand.Execute

 'wait for sync process to complete

 If WaitForSyncToFinish(strSyncTicket) = False Then

 MsgBox "(error)SQL Sync to directory failed when deleting the distributionlist" + vbCrLf + "You can check the SQLSyncSvr logs in the \commserver\logs directory for more details"

 Else

 MsgBox "The directory sync is complete for the distribution list removal"

 End If

CleanUp:

 'close out the recordsets and exit

 On Error Resume Next

 rsTemp.Close

 Set rsTemp = Nothing

 Set oCommand = Nothing

End Sub

Adding a member to a public distribution list

Before adding users to a system distribution list you must first create a new one or import an existing distribution list from the directory. The distribution list you reference that you want to add the subscriber to must be in the DistributionList table in SQL which will only be the case if you’ve created them through Unity or imported them.

'Select a subscriber to add to a distribution list. The distribution list is referenced by an alias string in the listDLs list box on the form. The user to add to the list is selected in a subscriber search dialog that returns the ObjectID of the selected subscriber.

Private Sub cmdAddUser_Click()

Dim strSubscriberObjectID As String

Dim strSubscriberDirectoryID As String

Dim strSystemDlistObjectID As String

Dim strDLDirectoryID As String

Dim rsTemp As ADODB.Recordset

Dim strSQL As String

Dim oCommand As ADODB.Command

Dim strSyncTicket As String

 'make sure a distribution list is selected in the list box.

 If Me.listDLs.ListIndex < 0 Then

 MsgBox "You must first select a distribution list to add users to"

 Exit Sub

 End If

 'get the user to select a subscriber on the local Unity server. This form allows the user to select a subscriber in a simple grid and then exposed the selection via public variables. If the user hits cancel without selecting a subscriber the public bCancel Boolean will be set to true. Showing this using the vbModal option means it will require input before the user is allowed to do anything else which simplifies things a great deal.

 frmSubscriberSearch.Show vbModal

 If frmSubscriberSearch.bCancelHit = True Then

 'the user opted to cancel out of the dialog without selecting a user - exit out

 Exit Sub

 End If

 'snag the directoryID and objectID of the subscriber to add. This stored procedure is a little extra fussy in that it wants both the objectID and DirectoryID of both the subscriber being added and the distribution list they are being added to. The reasons for this are a bit mysterious but my role is not to ask why...

 strSubscriberObjectID = frmSubscriberSearch.strObjectID

 Set rsTemp = New ADODB.Recordset

 rsTemp.CursorLocation = adUseClient

 'go fetch the subscriber's directoryID which is required for this SP to work properly.

 strSQL = "Select DirectoryID from vw_Subscriber WHERE SubscriberObjectID='" + strSubscriberObjectID + "'"

 rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount = 0 Then

 MsgBox "Error! Subscriber could not be found by SubscriberObjectID=" + strSubscriberObjectID

 GoTo CleanUp

 ElseIf rsTemp.RecordCount > 1 Then

 MsgBox "Error! More than one subscriber found by SubscriberObjectID=" + strSubscriberObjectID

 GoTo CleanUp

 End If

 'check to see if the DirectoryID for the selected subscriber is NULL - this usually means there was a problem synching them to the directory when they were first entered - either way it spells bad news for us so we'll have to bail out.

 If IsNull(rsTemp("DirectoryID")) Then

 MsgBox "Error! The selected subscriber has a NULL directory ID - this usually means they did not synch to the directory properly when created."

 GoTo CleanUp

 End If

 strSubscriberDirectoryID = rsTemp("DirectoryID")

 rsTemp.Close

 'Check to see if this subscriber is already a top level member of the distribution list

 strSQL = "SELECT vw_Subscriber.Alias FROM vw_Subscriber INNER JOIN vw_SystemDListMember ON vw_systemDListMember.DirectoryID=vw_Subscriber.DirectoryID WHERE ParentAlias='" + listDLs.Text + "' and vw_Subscriber.Alias='" + strSubscriberAlias + "'"

 rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount > 0 Then

 MsgBox "This subscriber is already a member of the selected distribution list"

 GoTo CleanUp

 End If

 rsTemp.Close

 'now go fetch the SystemDListObjectID and DirectoryID of the currently selected distribution list that the user wants to add this subscriber to. We’ll need both for the stored procedure to work properly.

 strSQL = "SELECT Alias, SystemDListObjectID, DirectoryID from vw_DistributionList WHERE Alias='" + listDLs.Text + "'"

 rsTemp.Open strSQL, strConnectionString, adOpenKeyset, adLockReadOnly

 If rsTemp.RecordCount = 0 Then

 MsgBox "Error! Could not find distribution list by selected alias."

 GoTo CleanUp

 ElseIf rsTemp.RecordCount > 1 Then

 MsgBox "Error! Found more than one match in the distribution list table for selected alias."

 GoTo CleanUp

 End If

 'check to see if the DirectoryID is NULL as above - again this usually indicates there was a problem synching the object to the directory when it was created originally.

 If IsNull(rsTemp("DirectoryID")) Then

 MsgBox "Error! The DirectoryID of the selected distribution list is NULL - this usually means there was a problem synching the list to the directory when it was created."

 GoTo CleanUp

 End If

 strDLDirectoryID = rsTemp("DirectoryID")

 strSystemDlistObjectID = rsTemp("SystemDListObjectID")

 rsTemp.Close

 ‘OK, we have the ObjectID and DirectoryID of both the subscriber to be added and the distribution list to add them to so we’re ready to roll with the stored procedure here.

 Set oCommand = New ADODB.Command

 oCommand.ActiveConnection = strConnectionString

 oCommand.CommandType = adCmdStoredProc

 oCommand.CommandText = "csp_SystemDListMemberCreate"

 oCommand.Parameters.Item("@SystemDListObjectID") = oCommand.CreateParameter("SystemDListObjectID", adGUID, adParamInput, , strSystemDlistObjectID)

 oCommand.Parameters.Item("@SystemDListDirectoryID") = oCommand.CreateParameter("SystemDListDirectoryID", adVarChar, adParamInput, , strDLDirectoryID)

 oCommand.Parameters.Item("@SubscriberObjectID") = oCommand.CreateParameter("SubscriberObjectID", adGUID, adParamInput, , strSubscriberObjectID)

 oCommand.Parameters.Item("@SubscriberDirectoryID") = oCommand.CreateParameter("SubscriberDirectoryID", adVarChar, adParamInput, , strSubscriberDirectoryID)

 'tell the stored proc to force this change into the directory for us, of course. The “1” for the directory synch flag here indicates to only synch the user information.

 oCommand.Parameters.Item("@DirectorySync") = oCommand.CreateParameter("DirectorySync", adInteger, adParamInput, , 1)

 oCommand.Parameters.Item("@DirectorySyncFlags") = oCommand.CreateParameter("DirectorySyncFlags", adInteger, adParamInput, , 1)

 'We need to create a GUID that we can pass into the stored proc such that we can look for it in the DirectorySyncTicket table in SQL which is used to pass back the results of this sync

 strSyncTicket = generateDirectorySyncTicket

 oCommand.Parameters.Item("@DirectorySyncTicket") = oCommand.CreateParameter("DirectorySyncTicket", adGUID, adParamInput, , strSyncTicket)

 frmMain.Refresh

 frmMain.MousePointer = vbHourglass

 DoEvents

 'let the stored proc fly.

 oCommand.Execute

 frmMain.MousePointer = vbDefault

 'wait for sync process to complete

 If WaitForSyncToFinish(strSyncTicket) = False Then

 MsgBox "(error)SQL Sync to directory failed when adding subscriber to DL" + vbCrLf + "You can check the SQLSyncSvr logs in the \commserver\logs directory for more details"

 Else

 MsgBox " Directory sync complete for subscriber add"

 End If

CleanUp:

 'close out the recordsets and exit

 On Error Resume Next

 rsTemp.Close

 Set rsTemp = Nothing

 Set oCommand = Nothing

End Sub

